Inherit Technology and Dedicate to Excellence

R

TORCH

MoSi₂ Electric Heating Elements of Yantai Torch Instruction Manual

~ORCI.

TORCH

YANTAI TORCH SPECIAL HIGH TEMPERATURE CERAMICS CO., LTD

VITORCH

Ś

R

VITORCH

TTORCH

Address: No. 9 Xiulin Road, Laishan District, Yantai City, Shandong Province Tel: 0535 – 6891306 Fax: 0535 – 6891307 Website: http://www.torch-mosi.com

ORCH

TORCH

YANTAI TORCH SPECIAL HIGH TEMPERATURE CERAMICS CO., LTD

Company Profile

Yantai Torch Special High Temperature Ceramics Co., Ltd. is a high-tech enterprise with independent intellectual property rights specializing in the R&D and professional production of molybdenum silicide series products. The company has introduced the most advanced process technology in the field of new material synthesis to produce molybdenum silicide series products with the world's top quality level.

We persistently adhere to our enterprise tenet "Inherit Technology and Dedicate to Excellence" and carry forward our enterprise spirit "Dare to Be the First, Press Forward with Indomitable Will" by providing quality products and perfect service for general domestic and foreign customers with advanced technology, excellent equipment and scientific management. And we are exerting ourselves to be a reliable and prestigious supplier in the worldwide new material field.

Table of Contents

~ nRl.

ORCY

I. Brief Introduction of MoSi₂ Material01
II. Introduction of Yantai Torch MoSi₂
Series Products02
III. Performances of Yantai Torch MoSi2
Electric Heating Elements09
IV. Precautions for Installation of MoSi2
Electric Heating Elements12
V. Precautions for Use of MoSi₂ Electric
Heating Elements17
VI Electrical Technical Manual of MoSi2
Electric Heating Element19
VII. Electrical Parameters of Yantai Torch
MoSi ₂ Electric Heating Elements
VIII. Overview of MoSi₂ Electric Heating
Element Accessories49
ORLI

YT TORCH

-01 -

I. Brief Introduction of MoSi2 Material

The molybdenum silicide was found in 1906. Under different conditions, the silicon and molybdenum can be formed MosSi, MosSis and MoSiz. Among them, the MoSiz can form a thin and adhesive protective layer of quartz glass (SiO) on its surface to prevent further oxidation under high temperature. $MoSi_2$ has good high temperature oxidation resistance and excellent electrical conductivity. With melting point of 2030°C and density of $6.3g/cm^3$ and various good high temperature performance, it is identified as a kind of ultra high temperature structural material with great potentiality. MoSi₂ is a kind of chemical compound of silicon and molybdenum. Due to the small difference in the radius of the two atoms and the close electronegativity, it has properties similar to those of metals and ceramics. At the low-temperature stage, the MoSia material has high strength but high brittleness (similar to ceramic), when the temperature reaches 1000°C and above, it also has metal like soft plasticity. The MoSi₂ was mainly applied as coating protection material that is resistant to high temperature and corrosion on metallic matrix surface at early stage. It was firstly used in coating of spare parts of gas turbines, combustion chambers of jet motors and guided missiles. At present, the MoSi₂ material is mostly used in high temperature electric heating elements, bubble pipes of glass tank furnace, thermocouple-protection tubes and high temperature resistance and oxidation resistance powder.

II. Introduction of Yantai Torch MoSi2 Series Products

1. Classification of Yantai Torch MoSi2 Electric Heating Elements

Туре	Product Serial No.	Judgment Standard (Air Environment)	Product Features	Application Range
	TC1700	Element Temperature 1700°C	Compact and good element protective layer; Common NeSiz products apply to low temper- ature electric furnaces, especially special atmosphere electric furnaces	Al2O3, SiO3 and other materials sintering
	TC1800	Element Temperature	Compact and good element protective layer; The product density and heat resistance improve greatly comparing with TC1700 products; Furnace temperature: within 1650°C	High-purity materials (Al2O3, SiO2, ZrO2, Y2O3
Heating Element	VIDLOOO	1800°C	Compact and good element protective layer; The high temperature strength is slightly higher than TC1800 products; Furnace temperature: within 1700°C.	and ITO) sintering
R	TC1850	Element Temperature 1850℃	High compactness and purity; The temperature resistance degree improves and it can bear large surface load	Dental materials (MgO, Y2O3 and ZrO3) sintering
	TC1900	Element Temperature 1850℃	High compactness and purity; Good high temperature strength; Very thin protective layer with good performance; Can bear large surface load	High temperature electric furnaces having special requirements on high temperature strength and protective layer of electric heating elements

2. Introduction of Specialized Yantai Torch Heating Element

Product Name	Main Features	Application	Maximum Operating Temperature
Dedicated Heating Element for Special Atmosphere	 The compact and complete element protective layer can well resist the corrosion of special atmosphere; The protective layer has strong regeneration capacity under oxidation environment and high temperature conditions. 		Element temperature 1700°C

-02-

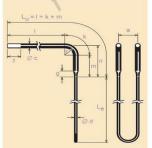
YT TORCH

YT TORCH

®

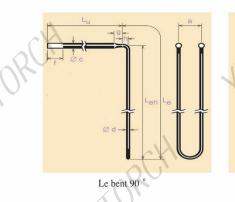
		Precise electric furnaces		
Specialized Heating Element for Dental Furnace	 The heating element has high purity, which can reduce the impurity content to the utmost extent; The product has good high temperature strength, which can bear greater surface load under high temperature; The product can adapt to electric furnaces with frequent use and fast temperature increasing and decreasing; The protective layer of heating element is thin and compact, which can avoid it falling off during using to a large extent. 	having higher requirement on hating dements such as electric furnaces for denissry; Electric furnaces with fast temperature increasing and decreasing, frequent use and short sintering period	Element temperature: 1850° C (air environment)	
Specialized Heating Element for Semiconductor	 This product is precision machining with higher heating power and it can provide uniform thermal field for electriciturnaces; Corresponding shapes can be manufactured based on operating requirement of customers. This product can maintain a certain performance in use with long service life; Comparing with the metal wire, it can bear greater surface load and rapid temperature increasing system (fast cooling and temper- ature increasing); It can match with various dimensions of wafers from small size to large size, multi-application. It can ensure the cleanness of relevant equipment if being used under high temperature. 	Electric furnaces for semiconductor wafers; Cylinder-shaped electric furnaces;	Element temperature: 1700 °C (air environment)	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Specialized Heating Element for ITO	 It is specially designed for ITO electric furnaces and it can bear greater surface load; The product has high purity and the impurity content is reduced to the utmost extent so as to ensure the cleanness of electric furnaces; The junction state between the heating element protective film and matrix surface is improved through special treatment so that the protective film is not easy to fall off when using the heating element; The junction state between the heating element protective film and element matrix surface is very good so that it is very suitable for high oxidizing gas atmosphere furnaces; Good high temperature strength and low deformation probability. 	ITO target material sintering electric furnaces	Element temperature: 1800°C (air environment)	
f 1 5	for Dental Furnace Specialized Heating Element for Semiconductor	 Heating Element for Dental Furnace bear greater surface load under high temperature; The product can adapt to electric furnaces with frequent use and fast temperature increasing and decreasing; The protective layer of heating element is thin and compact, which can avoid it falling off during using to a large extent. This product is precision machining with higher heating power and it can provide uniform thermal field for electric furnaces; Corresponding shapes can be manufactured based on operating requirement of customers. This product can maintain a certain performance in use with long service life; Comparing with the metal wire, it can bear greater surface load and rapid temperature increasing system (fast cooling and temper- ature increasing); It can match with various dimensions of wafers from small size to large size, multi-application. It can ensure the cleanness of relevant equipment if being used under high temperature. It is specially designed for ITO electric furnaces and it can bear greater surface load; The product has high purity and the impurity content is reduced to the utmost extents os to ensure the cleanness of electric furnaces; The junction state between the heating element protective film and matrix surface is improved through special treatment so that the protective film is not easy to fall off when using the heating element 4. The junction state between the heating element protective film and matrix surface is very good so that it is very suitable for high oxidizing gas atmosphere furnaces; 	Heating Element for Dental Furnace bear greater surface load under high temperature; 3. The product can adapt to electric furnaces with frequent use and fast temperature increasing and decreasing; 4. The protective layer of heating element is thin and compact, which can avoid it falling off during using to a large extent. lectric furnaces with frequent use and short sintering period Specialized Heating Element for Semiconductor 1. This product is precision machining with higher heating power and it can provide uniform thermal field for electric furnaces; 2. Corresponding shapes can be manufactured based on operating requirement of customers. This product can maintain a certain performance in use with long service life; 3. Comparing with the metal wire, it can bear greater surface load and rapid temperature increasing system (fast cooling and temper- ature increasing); 4. It can match with various dignensions of wafers from small size to large size, multi-application. 5. It can ensure the cleanness of relevant equipment if being used under high temperature. I. It is specially designed for ITO electric furnaces and it can bear greater surface load; 2. The product has high purity and the impurity content is reduced to the unmost extents oas to ensure the cleanness of electric furnaces; 3. The junction state between the heating element protective film and matrix surface is improved through special treatment so that the protective film is not easy to fall off when using the heating element; 4. The junction state between the heating element protective film and element matrix surface is very good so that it is very suitable for high oxidizing gas atmosphere furnaces; ITO target material sintering electric furnaces	Heating Element for Dental Furnace bear greater surface load under high temperature; 3. The product can adapt to electric furnaces with frequent use and fast temperature increasing and decreasing; 4. The protective layer of heating element is thin and compact, which can avoid it falling off during using to a large extent. Bechric furnaces if normality, Bechric furnaces if normality, temperature increasing and decreasing; and short sintering period BSO ⁺ C (air environment) Specialized Heating Element for Semiconductor 1. This product is precision machining with higher heating power and it can provide uniform thermal field for electric furnaces; 2. Corresponding shapes can be manufactured based on operating requirement of customers. This product can maintain a certain performance in use with long service life; 3. Comparing with the metal wire, it can bear greater surface load and rapid temperature increasing system (fast cooling and temper- ature increasing); 4. It can match with various dimensions of wafers from small size to large size, multi-application. 5. It can ensure the cleanness of relevant equipment if being used under high temperature; 3. The junction state between the heating element protective film and matrix surface load; 3. The junction state between the heating element protective film and matrix surface is improved through special treatment so that the protective film is not easy to fall off when using the heating element; 4. The junction state between the heating element protective film and matrix surface is improved through special treatment so that the protective film is not easy to fall off when using the heating element, 4. The junction state between the heating element protective film and element matrix surface is very good so that it is very suitable for high oxidizing gas atmosphere furnaces; ITO target material sintering electric furnaces

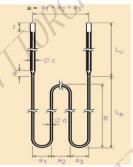
3.Range of Yantai Torch MoSi2 Electric Heating Elements


Product Standa	ard Specifications		18	00	-	TC1900	
Hot Zone(Le) Diameter-mm	Cold Zone(Lu) Diameter-mm	TC1700	TC1800	MR1800	TC1850	TC1900	
3	6	\checkmark	\checkmark	1	1	~	
4	9	\checkmark	~	1	1	1	
6	12	\checkmark	\checkmark	~	\checkmark	\checkmark	
9	18	\checkmark	\checkmark	1	× ×	×	
12	24	\checkmark	\checkmark	×	×	Х	

• Note: the above types are standard products.6. If special diameter or specification is required, it can be negotiated (such as hot zone (Le) diameter 5mm or 7mm or hot zone (Le) diameter 6mm and cold zone (Lu) diameter 9mm).

YANTAI TORCH SPECIAL HIGH TEMPERATURE CERAMICS CO., LTD.


4.Dimensionof Yantai Torch MoSi2 Electric Heating Elements



U- Shape

TORCH

Lu bent 90°

W-Shape

Parameters of Processing Standards

Element	d-mm	C-mm	a-n	nm	g-mm	f-mm	h-mm	n–	mm
Specification	u-min		Standard	Minimum	g-min	1-11111		Standard	
3/6	3	6	25	10	15	30	10	40	35
4/9	4	9	25	18	20	30	10	50	45
6/12	6	12	50	25	25	45	15	90	60
9/18	9	18	60	40	32	75	20	135	80
12/24	12	24	80	45	40	100	35	150	120
				1					_

-04-

®

-03-

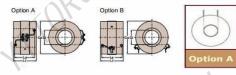
5. Yantai Torch Heating Modules and Special-Shaped MoSi2 Products

Torch heating modules consist of vacuum formed ceramic fiber material with the integral Yantai Torch MoSia heating element. The heating modules includes spirals (YTMU), half cylinders (YTHC) and flat panels. Customers could choose the appropriate module according to the requirements, or customize the module according to the specific requirements.

- The temperature of oxidation atmosphere furnace can reach 1550°C:
- Can be adapt to rapid temperature rise and fall;
- Provide high quality uniform thermal field;
- The module is easy to install and can be assembled and used flexibly;
- Various shapes can be customized according to the needs of electric furnace.

5.2Application Fields of Heating Module:

Metal products heat treatment and processing, glass industry (feeding and melting link), ceramic industry, electronic industry (single crystal growth furnace, diffusion furnace, ITO sintering), etc.


5.3Yantai Torch Heating Module Series Product Type:

Yantai Torch heating module can be customized with different shapes and powers according to the furnace type and sinter, and the requirements of thermal field and power can be satisfied by different shape and diameter of heating elements.

5.3.1 Yantai Torch Heating Module Series Product - YTMU

ANTAI TORCH SPECIAL HIGH TEMPERATURE CERAMICS CO., LTI

Option

	Module	e Refractory Size			Furnace Effective	Elemen			Shape Data of Heating Element		
Туре	Туре	Height/mm	ID/mm	OD/mm	Diameter/mm	Voltage-V	Resistance-D	Power-W	Turns	Pitch/mm	Cold End Conte Distance/mm
TMU40	А	250	40	240	30	34.5	0.821	1450	13.5	15	203
111040	В	250	40	240		35.7	0.850	1500	14	15	210
TMU60	Λ	250	.60	260	50	50.1	1.192	2100	13.5	15	203
114000	В	250	60	200	50	51.9	1.235	2180	14	15	210
2711100	Λ	250	80	200	70	65.7	1.563	2760	13.5	15	203
TMU80	В	250	80	280		68.1	1.620	2860	14	15	210
TMU100	۸	250	100	300	90	81.3	1.935	3410	13.5	15	203
130100	В	250	100	500	90	84.2	2.005	3540	14	15	210
THU: 107	А	250	125	325	115	100.7	2.399	4230	13.5	15	203
TMU125	В	230	125	323	115	104.4	2.487	4390	14	15	210
TUU1 50	A	250	150	350	140	120.2	2.863	5050	13.5	15	203
TMU150	В	200	150	550	140	124.7	2.968	5240	14	15	210
110000	A	250	200	400	190	159.2	3, 791	6690	13.5	15	203
TMU200	В	200	200	400 190	165.1	3.930	6930	14	15	210	

Туре					Furnace Effective	Elemen	Element Electrical Parameters			Shape Data of Heating Element		
Type		Height/mm	ID/mm	OD/mm	Diameter/mm	Voltage-V	Resistance-0	Power-W	Turns	Pitch/mm	Cold End Cente Distance/mm	
TMU40	Α	250	40	@40	30	38.5	0.895	1650	13.5	15	203	
111040	В	200	40	240	30	39.9	0.927	1710	14	15	210	
(THUCO	А	250	60	260	50	55.9	1.301	2410	13.5	15	203	
TMU60	В	200	00	260	50	58.0	1.348	2490	14	15	210	
TMU80	Α	250	80	280	70	73.4	1.707	3160	13.5	15	203	
1111180	В	200	80	280	70	76.1	1.769	3270	14	15	210	
	А	250	100	300	90	90.8	2.113	3910	13.5	15	203	
TMU100	В	250	100	300	90	94.2	2.190	4050	14	15	210	
	Α	250	125		117	112.7	2.620	4840	13.5	15	203	
TMU125	В	250	125	325	115	116.8	2.716	5020	14	15	210	
	А	250	150	250	140	134.5	3,128	5780	13.5	15	203	
TMU150	В	200	150	350	350 140	139.4	3.243	5990	14	15	210	
	А	250	200	100	100	178.1	4.143	7660	13.5	15	203	
TMU200	В	200	200	400	400 190	184.7	4.295	7940	14	15	210	

 $\Phi 4/9$ or $\Phi 6/12$ heating element could meet higher power requirement.

-06-

YT TORCH

-05-

5.3.2Yantai Torch Heating Module Series Product - YTHC

ANTAI TORCH SPECIAL HIGH TEMPERATURE CERAMICS CO., LTD.

A)	B)	C)
at	2	
		M

YT TORCH

-07-

-	Module		Refractory Size		Furnace Effective	Elemen				
Туре	Туре	Height/mm	ID/mm	OD/mm	Diameter/mm	Voltage-V	Resistance-0	Power-W	Total Number of U Shape	Height of Heating Element/mm
THC100	A/B/C	200	100	300	85	22.4	0.533	940	7	150
THC150	A/B/C	200	150	350	135	34.0	0.809	1427	11	150
THC200	A/B/C	200	200	400	185	45.6	1.086	1916	15	150
THC250	A/B/C	200	250	450	235	57.4	1.366	2409	19	150
тнсзоо	A/B/C	200	300	500	285	68, 9	1.641	2895	23	150
THC400	A/B/C	200	400	600	385	86.8	2.066	3644	29	150

 \sim

	Module	Refractory Size			Furnace Effective	Elemen					
Туре	Туре	Height/mm	ID/mm	OD/mm	Diameter/mm	Voltage-V	Resistance-0	Power-W	Total Number of U Shape	Height of Heatir Element/mm	
THC100	A/B/C	200	100	300	85	25.5	0.607	1072	7	150	
THC150	A/B/C	200	150	350	135	38.8	0.924	1629	11	150	
THC200	A/B/C	200	200	400	185	52.2	1.242	2191	15	150	
THC250	A/B/C	200	250	450	235	65.6	1.562	2756	19	150	
тнсзоо	A/B/C	200	300	500	285	78.9	1.878	3318	23	150	
THC400	A/B/C	200	400	600	385	99.3	2.365	4172	29	150	

 $\Phi4/9,\,\Phi6/12$, $9/18~{\rm or}~12/24$ heating element could meet higher power requirement

YT TORCH

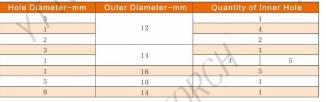
ANTAI TORCH SPECIAL HIGH TEMPERATURE CERAMICS CO., LTD

5.3.3 Yantai Torch Heating Module Series Product - Flat Panels

Flat panels heating modules can be customized 3/6, 4/9, 6/12, 9/18 or 12/24 heating elements according to the power demand.

5.3.4 Yantai Torch MoSi2 Heating Element for Semiconductor Diffusion Furnace (Oxidation Furnace) - FTPS

Yantai Torch MoSi₂ heating element for vertical diffusion furnace (oxidation furnace) of semiconductor wafer (FTPS) characterized by high strength at room temperature and good toughness which convenient installation and transportation, better service life, good temperature uniformity and fast heating rate. The main production models of this kind of heating elements are: VOS-40-017, VOS-56-002, VOS-56-003, VOS-56-101(P), etc. Yantai Torch has advanced production technology and equipment to ensure the stability and uniformity of all types


of heating elements. This series of heater has been widely recognized and praised by customer.

6. Classification of Yantai Torch Bubble Pipes

The bubble pipes of MoSi₂ material have thermal shock resistance, high temperature resistance and oxidation resistance. Therefore, they are not easy to be corroded in glass solutions and they do not contaminate glass solutions, they are the best choice for bubbling of glass tank furnace at clarification stage.

The model of Yantai torch bubble pipes is as follow, for special models, please provide technical parameters for specific consultation.

Note: Thermocouple-protection tubes can be processed by those with hole diameter above 5mm.

-08-

YT TORCH

Standard description: TCG17- Φ 3× Φ 12×800 (3-Hole Diameter; 12-Outer Diameter; 800-Length)

TCG17- Φ 1×4× Φ 14×800 (1-Hole Diameter; 4-Quantity of Inner Hole; 14-Outer Diameter; 800-Length)

Standard f=45mm, could be adjusted according to customer requirements.

7. Yantai Torch MoSi₂ Powder

The MoSi₂ powder is mainly used in high temperature resistance and oxidation resistance coating. It can also be compounded with other materials to improve performance.

Power Purity	Particle Size		Principal	Second	Main Impurity Composition				
	D 50	Dao	Phase	Phase	Fe	A1	Са	0	
≥99%	<5.0µm	<15 µ m	MoSi2	MosSi3	<0.1%	0.01%	0.011%	0.2%	

III. Performances of Yantai Torch MoSi2 Electric Heating Elements

1. Physical Performance of Yantai Torch MoSi₂ Products

Туре	Density-g/cm ³	Bending Strength under Room Tem- perature-MPa	Hardness-GPa	Compression Strength-MPa	Water Absorption-%	Thermal Elongation-%
TC1700	5.8 ± 0.1	450	11	>1500	≤0.2%	4
TC1800	6.0 ± 0.1	500	12	>1500	≤0.2%	4
MR1800	5.9 ± 0.1	430	11.5	>1500	≤0.2%	4
TC1850	6.6 ± 0.1	460	11	>1500	≤0.2%	4
TC1900	7.0 ± 0.1	360	10.5	>1500	≤0.2%	4

2. Relationship between Resistivity and Temperature

MoSiz electric heating element is a kind of metal ceramic resistance element, the resistivity increases rapidly with the increase of temperature. It means that when the element is connected to a constant voltage, the power at lower temperature will be higher and will gradually decrease with the increase of temperature, thus shortening the time for the furnace to reach the operating temperature. In addition, with the decrease of the power of the components, the danger of overheating of the components themselves will be reduced. YANTAI TORCH SPECIAL HIGH TEMPERATURE CERAMICS CO., LTD.

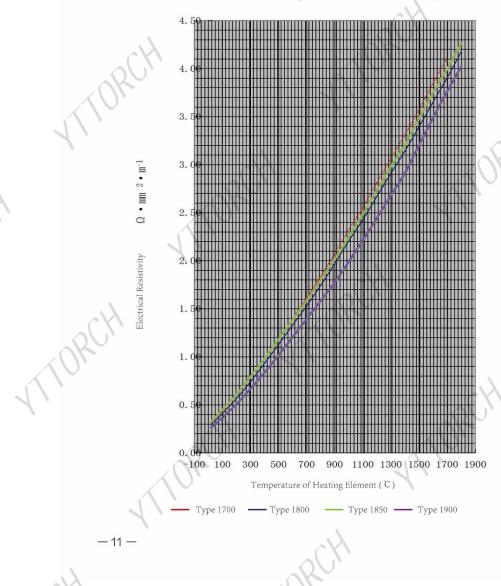
Based on the material characteristics of MoSi2 electric heating element, special attention should be paid to the design of control system.

(1)The element resistance at 20°C is 11 times lower than that at 1500°C. Therefore, if full voltage is applied at start-up, a peak current of 11 times the rated current will flow through the element. It will result in fast melt burn out or thyristor failure.

(2)Molybdenum Disilicide material is brittle at Low temperatures, which means that excessive current may cause electromagnetic forces large enough to break the element.

Temperature Comparison Table of Electrical Resistivity of Heating Elements

Tempe− rature (℃)	Electrical Resistivity 1700 Type(Ω · mm²/m)	Electrical Resistivity 1800 Type(Ω · mm²/m)	Electrical Resistivity 1850 Type(Ω · mm²/m)	Electrical Resistivity 1900 Type(Ω · mm ² /m)
20	0.306	0.286	0.321	0.263
100	0.448	0.398	0.447	0.366
200	0.622	0.550	0.605	0.506
300	0.816	0.724	0. 789	0.666
400	1.020	0.907	0.980	0.835
500	1.224	1.102	1.179	1.015
600	1.418	1.306	1.384	1.203
700	1.632	1.509	1.584	1.393
800	1.846	1.714	1.800	1.584
900	2.071	1.918	2.014	1.774
1000	2.285	2.142	2.249	1.990
1100	2. 499	2.366	2.484	2, 212
1200	2.734	2.601	2.731	2. 442
1300	2.968	2.836	2.978	2.680
1400	3. 223	3.050	3.203	2.913
1500	3. 488	3.315	3.481	3.202
1600	3.743	3.570	3.749	3.488
1700	4.029	3.805	3.995	3.759
1800		4.060	4.263	4.019


-10 -

YT TORCH

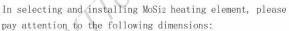
-09-

YT TORCH

Variation Curve with Temperature of Electrical Resistivity

3.Maximum Operating Temperature of MoSi₂ Electrical Heating

Elements in Different Service Environment


YANTAI TORCH SPECIAL HIGH TEMPERATURE CERAMICS CO., LTE

Atmosphere	Туре 1700	Type1800	Type1850	Туре 1900
Air	1700	1800	1830	1850
Nitrogen	1600	1700	1700	1700
Argon, Helium	1600	1700	1700	1700
Dry hydrogen dewpoint −80°C	1150	1150	1150	1150
Moist hydrogen dewpoint 20°C	1450	1450	1450	1450
Exogas (Ex. 10% CO ₂ , 5% CO and 15% H ₂)	1600	1700	1700	1700
Endogas (Ex. 40% $\rm H_2$ and 20% CO)	1400	1450	1450	1450
Cracked and partially burnt ammonia (8% H2)	1400	1450	1450	1450

V.Precautions for Installation of MoSi₂ Electrical Heating Elements

MoSi2 electric heating element is a kind of metal ceramic material, which is similar to ceramic at room temperature. It has great brittleness and low impact strength.

Therefore, care should be taken during transportation and installation to prevent damage. It has soft plasticity at high temperature. Generally used for electric furnace, the u-shaped element is mostly vertically suspended to the top of the furnace by fixing clamp. The purpose of such kind of installation is to avoid mechanical stress adding to the electrical heating element, which may lead to component fracture.

1.Top Distance (Lc)

Figure 1. Installation parameters for common U-shaped heating element in furnace

The furnace top part Lc of electric heating element cold end is mainly used to install the fixture and connecting wire of electric heating element. Therefore, the data of this part varies from different electrical heating elements. Please refer to the following data:

-12 -

YT TORCH

YT TORCH

Element Specifications Items	Ф 3/6	Ф 4/9	Ф 6/12	Ф 9/18	Ф12/24
Furnace Top Size-Lc	50	50	75	125	150
Transition Section Length-g	15	20	25	32	40
Cold Zone Length-Lu		L	c+Li+g		8

• Note: In above table, Lc is the minimum value, it's suggested to lengthen it based on actual furnace conditions, Li is the thickness of the furnace top The cone part (g) of the terminal should be fully below the hot face of the lining and extend into the furnace to prevent the heat of the tapered part from being released, resulting in the damage.

2.Distance to Bottom (h)

In order to prevent the elements from coming into contact with any material deposited on the bottom of the furnace and to compensate for the elongation of the elements at high temperatures, the recommended vertical distance h between the element bend and the furnace floor should be at least: $h \ge Le/20$ Min. h=10mm

3.Distance to Wall (e)

-13 -

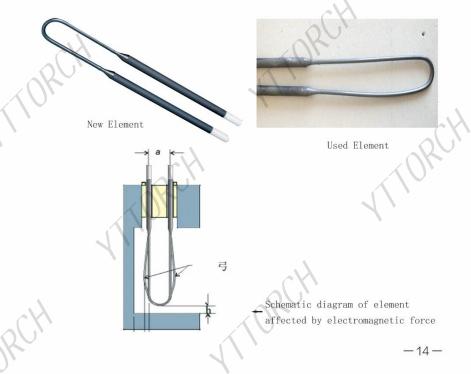
Working under high temperature, affected by electromagnetic force and other factors, there will be certain deformation on electrical heating element hot end. It is important that the distance between wall and heating zone of the element be large enough to avoid contact. In the case of long elements at high temperatures, electromagnetic forces and bad centering when installing the elements may cause the elements to come in contact with the walls, causing damage.

The minimum distance, e, between the heating zone of the element and the furnace walls depends on the length of element.

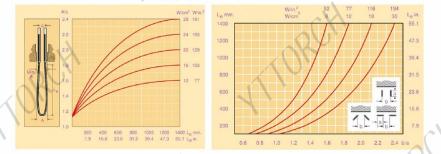
When installed along the wall, please refer to the following data:

Hot end length-Le	>1000mm	300 ~ 1000mm	<300mm
Distance from hot end to furnace wall-e	Min. 50mm	Le/20	Min. 15mm

4. Precautions for Installation and Distribution


Due to the high-temperature soft plasticity of the electric heating element, when the working current is large, the hot end will arch outward under the action of magnetic force. If the installation and setting are improper, the two adjacent heating bodies will touch with each other, or the heating body will touch with the furnace wall. Therefore, attention should be paid to when designing the electric furnace and heating element.

ANTAI TORCH SPECIAL HIGH TEMPERATURE CERAMICS CO.


YT TORCH

MoSi2 heating element are mostly single U-shaped or multi U-shaped combination. The flow of current in the elements generates electromagnetic force, resulting in repulsive force on both side of the U-shaped. After power on, when the heating zone reaches the softening temperature, the distance a(center distance)between the elements increases by electromagnetic repulsive force.

The two legs of the heating part (hot end) of the new element are regular and parallel, but the used element, especially the element after long-term use, will have obvious bow deformation at the hot end, which is actually the direct embodiment of the influence of electromagnetic force on components.

Please refer to the following graphs for specific solutions:

The longer the hot end of the element and the higher the surface load, the greater the shape variable of the hot end. Therefore, please set the furnace and electrical heating element according to the calculating methods in the graphs during design and installation. We suggest that users reduce the surface load of MoSiz heating elements as much as possible during the design and use of MoSiz heating elements (according to actual situation of the electric furnace, the largest number of heating elements should be arranged in the design stage, and the larger diameter of the hot end should be selected). The suggested surface load of YT Torch 1700 type element is below 13.5w/cm² under 1300°C furnace temperature. The suggested surface load of YT Torch 1800 type element is below 11.5w/cm² under 1600°C furnace temperature and the suggested surface load of YT Torch 1850 type products is below 12 w/cm² under 1720°C furnace temperature . If conditions permitting, lower surface load will significantly improve the service life of heating element, reduce the temperature gap between electrical heating element and furnace, and guarantee the uniformity of electric furnace thermal field.

5.The Electrical Heating Element Fixed Clamp and Connection Belt Installation note

-15-

Pictures of the electrical heating element fixed clamp and connection belt are shown in Figure 1:

Figure 1 Heating element fixed clamp and connection belt

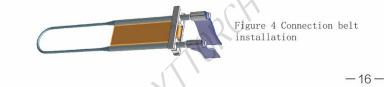
YANTAI TORCH SPECIAL HIGH TEMPERATURE CERAMICS CO., LTD.

YT TORCH

The installation steps are shown in Figure 2:

Remove the packaging pitch plate of the electrical heating element and adjust the size of the hole of the fixed clamp to let the electrical heating element cold end go through.

Figure 2 Electrical heating element and fixed clamp


Adjust the position of the electrical heating element and the fixed clamp and tighten the fixing screws on the clamp (as shown in Fig. 3). The electrical heating element is very brittle in cold state, pay attention not to twist the electrical heating element and avoid brittle fracture. Spray aluminum parts should stay a little above the clamp to avoid extreme temperature on these parts causing low temperature oxidation and aluminum melts and erodes the cold end.

Tighten screws of fixed clamp. Otherwise, as the electric furnace temperature increases, the fixing screws may loosen as a result of thermal expansion and cause the heating element slides by gravity, the heat end distorts and even element fracture. Therefore, during the initial installation, the screws should be tightened again after electric furnace heating up, (If the heating cycle is short, please tighten again after cooling.)

Installation of Connection Belt: Adjust the connection belt hole to make it slightly larger than the diameter of the cold end. Fix the connection belt to spray aluminum parts, and fasten the screws. Thermal expansion and cold contraction of aluminum belt or screws also happens to this part in use, resulting poor contact between connection belt and electrical heating element, and then generates heat or electric arc, which may lead to low temperature oxidation or arc fusing of elements. Therefore, the fixing screws on the connection belt also have to be fastened again after the electric furnace is started to avoid such problems in this part.

The following picture shows the common form of installing heating element on the top of refractory fiber furnace. The furnace top is slotted, and the thermal insulation module is installed in the middle of the cold end of element. After installation, the whole is inserted in to the furnace from the furnace top.

YT TORCH

-17-

V. Precautions for Use of MoSi₂ Electrical Heating Elements

MoSi2 materials possess excellent high temperature oxidation resistance, conductivity, high temperature stability, convenient to use and control, and other excellent performance. Due to its own characteristics, attention must be paid during use, otherwise, the MoSi2 electric heating elements are easily damaged by improper use.

1. Low Temperature Oxidation Property

MoSi2 material has excellent high temperature oxidation resistance, but low-temperature oxidation and pulverization will occur at low temperature, especially 400-700°C. Therefore, please avoid element long-term working in the rage of 400-700°C degree.

2.Resistance Property of MoSi2 Electrical Heating Elements

From the foregoing section 3.2, we've learnt that the electrical resistivity of MoSi electrical heating element increases with temperature increase. And the resistivity at high temperature is about 10 times that at low temperature.

Compared with metal heating wire, the MoSi2 heating element has much lower electrical resistance and works with low voltage and high current, thus transformer is generally required. The problem is that the electrical resistance of a MoSi2 heating element at low temperature is about 1/10 of that at high temperature. If a large voltage is directly loaded, the current will be 10 times that of the element at high temperature, which will cause a large current impact on the electric control part and heating element. This situation generally occurs at the beginning of power transmission and temperature rise of the electric furnace. When the furnace temperature cannot keep up with the set temperature, the power regulator will have the maximum power output, causing the Low temperature and low electrical resistance heating element to load large voltage and make high

current (it takes a certain time for heating element to rise temperature). Generally, we design the component loading voltage do not over 1/3 of the working voltage at low temperature stage. Or limit the current do not exceed the specified operating current of the component.

Here we give an example to show how to set the control parameters of the temperature control meter. For example, there is an electric furnace with 9pcs Φ 6/12 heating elements, which are divided into three groups and each group with three heating elements in star connection. The working parameters of a single element are: 10V-150A-1500W, the transformer output voltage loaded on the three heaters is 35V, the current is 180A, and thyristor regulation (power regulator). Heating system and temperature control meter parameters are set as follows:

YANTAI TORCH SPECIAL HIGH TEMPERATURE CERAMICS CO., LTD.

YT TORCH

	Heating	System	Temperature	Control Meter	Domorko
	Heating time-min	Specified Temperature – ${}^{\circ}{}^{\circ}$	Power Limiting – F	Maximum Output Voltage – V	Remarks
	30	300	20~30%	7~10.5	Mainly to limit output
1	60	1000	100%	35	voltage of the initial heating section to pr- event large current im-
	60	1500	100%	35	pact, and if there is current limiting function,
					recommended to set the current not to exceed 150A.

In this way, it can effectively prevent large current impact in the initial heating stage. Especially when the heating element is used for a long time, the internal structure of the heating element will change and become greater in brittleness. If the current impact is large, the heating element is very brittle to fracture, so this setting should be more cautious.

The resistance property of the MoSi2 heating element does not change with the using time, so that the old and the new elements can be used at the same time, which can greatly reduce the cost.

3. High Temperature Softening Property of MoSiz Electrical Heating Element

From the previous chapter, we know that the MoSi2 material has higher intensity but higher brittleness (similar to ceramics) at low temperature. When the temperature reaches more than 1000 °C, it also has metal-like soft plasticity. As MoSi2 electrical heating elements are usually operating at higher temperatures, we should consider the impact of its soft plasticity, to avoid element damage by high temperature deformation.

For example, if the elements are used horizontally, the working temperature should be reduced accordingly, because the temperature getting higher, the soft plasticity would become greater which will bring large deformation. The support of the flat plate and the heat dissipation of the elements should be considered. The deformation caused by gravity of L-shape elements shall be considered, which will cause the element to touch the furnace wall and damage. Therefore, special attention shall be paid in design and installation stage.

4. The Protective Film Characteristic of MoSi2 Electric Heating Element

The surface protective film of MoSi2 electric heating element is a layer of SiO2 glass film, which can prevent the internal MoSi2 matrix material from continuously oxidizing at high temperature. This is the high temperature oxidation resistance characteristic of MoSi2 material. However, due to the difference in expansion coefficient between the surface SiO2 glass film and the MoSi2 matrix material, the protective film will peel off during the cooling or heating in an intermittent oxidation atmosphere furnace. This is own characteristics of the MoSi2 electrical heating element. After the SiO2 glass film falls off and is used in the oxidizing atmosphere again, the surface protective film will be generated again, this is the self-healing function of protective film.

-18-

YT TORCH

VI.Electrical Technical Manual of MoSi₂ Heating Element

When designing the electrical control system of MoSi2 electric heating element, several characteristics of MoSi2 material should be fully considered: resistance characteristics, ceramic characteristics, high temperature soft plasticity and so on.

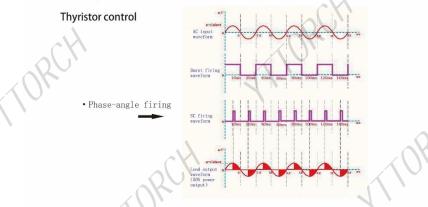
1.Control of MoSi₂ Electric Heating Element

The low cold resistivity characteristics of MoSi2 heating element implies that full operational voltage connot be applied to a cold furnace. In the past, only tapped transformers were available, allowing a reduced voltage to be applied when the furnace was cold, and then the voltage was gradually increased as the elements heated up, thus maintaining currents within manageable levels.

With the advent of modern thyristor (SCR) power control units and the various feedback control features available today, we now have a reasonably economical and reliable means of limiting the start-up currents and taking full advantage of Silicon molybdenum heating element's rapid heat-up capability.

Today furnaces equipped with MoSi2 heating elements are controlled in the following ways: (1) Thyristor control;

(2) Combined control of thyristor and transformer;


(3) Tap transformer;

-19-

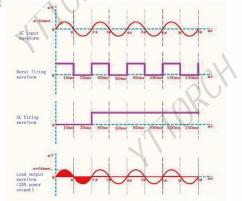
(4) High frequency linear DC switching power supply;

(5) Other control modes: such as contactor switch, changing the element connection, and on/off control etc.

Among them, the combination of thyristor, thyristor and transformer are the most commonly used control methods.

In phase-angle firing, the power is controlled by allowing the thyristors to conduct for a part of the AC cycle only. The thyristor should have a current ramp turn on function and RMS (Root Mean Square) current limit facility. It should be noted that this is not the same as the ramp function of the temperature controller.

YT TORCH


YANTAI TORCH SPECIAL HIGH TEMPERATURE CERAMICS CO., LTI

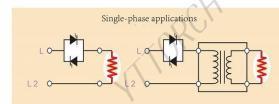
The thyristor starts to conduct with a small conduction angle, and then it increases towards maximum conduction during a number of periods. The more power needed, the larger part of the sinusoid is allowed to pass through the thyristors. If maximum permitted current is attained before full wave, the current limit facility does not permit further increase of the conduction angle.

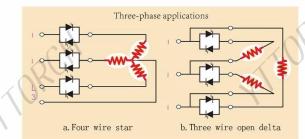
It is essential that the current is both measured and limited in the RMS method. The reason for this phenomenon is that in phase-shifting triggering, it is a working state under the distorted current waveform, and then the RMS method of current measuring is the only way to obtain a correct and meaningful value.

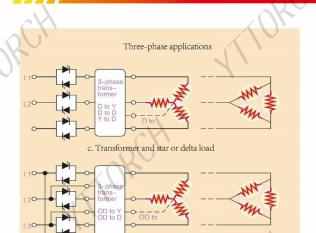
Phase shift triggering is to control the conduction angle of thyristor to control the conduction flux of thyristor. The output waveform is chopped, resulting in voltage distortion and RF interference, which may cause the failure of sensitive electronic equipment.

• Burst Firing

Burst firing is to firing the thyristor when crossing the zero point. Because the alternating current has positive and negative half cycles, it must pass through the zero point during the process from positive half cycle. Change the number of conduction cycles within a certain time to change the average output power of the thyristor and realize the effect of adjusting the load power, cycle number refers to a complete change of AC, that is, the time experienced by a sinusoidal waveform is called a cycle. This kind of motor output is similar to PWM signal regulation. The more conduction times in a certain time, the greater the average output power. As shown in the figure above, the cycle burst firing the output of all signals, and 25% of the output waveform.


The burst firing principle is to change the cycle number of thyristor conduction, and the output waveform is still sine wave, which has less pollution to the power grid; The disadvantage of burst firing is that it is prone to low-frequency interference. Because the work is intermittent, it is easy to flicker. It is not suitable for loads with obvious variable resistance and requiring continuous and stable current in cold state, such as silicon molybdenum and silicon carbon heating elements.


-20-


• Burst firing with phase-angle start

A usual method of dealing with the disadvantages of phase-angle firing and burst firing is to use a combination of them. Phase-angle firing is used during the heating up of the furnace so that the current can be sufficiently limited without using a step-down transformer with different voltage taps. When the furnace reaches a preset temperature below furnace temperature, an automatic switch is turned to burst firing mode. In this way negligible radio frequency interference is created once the furnace is hot. (See the figure below)

Applications with thyristor

ANTAI TORCH SPECIAL HIGH TEMPERATURE CERAMICS CO., LTI

2.Selection of Thyristor and Transformer

(1) Thyristor selection

 \rightarrow Voltage level: determine the voltage level of the control system according to the power of the electric furnace and the local power supply system, so as to determine the voltage level of the thyristor;

d. Six wire open delta with transformer and star or delta load

- Rated power: different manufacturers have different suggestions on the matching and selection of thyristor and electric furnace power. The rated power (current) of thyristor is at least 25% higher than the rated power (current) of electric furnace. For specific selection, please refer to the selection suggestions of manufactures. (2) Transformer selection

Transformer rated power = element rated power * 1.2

3.Suggestions on Electrical Wiring of MoSi₂ Heating Element.

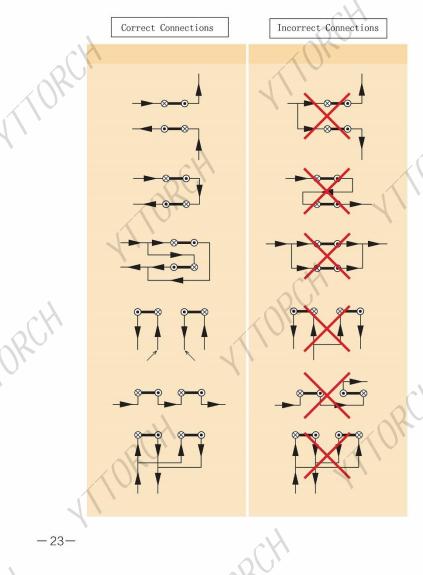
Current passing through two parallel conductors produces an electromagnetic force between them. If the current flows in the same direction in the two conductors, there is an attracting force. If two adjacent MoSi2 heating elements are connected to the same power supply, the current will flow in the same direction and the two adjacent legs will attract each other. When the heating elements reach 1200°C, they will soften and be pulled together by electromagnetic force. When the two heating elements are in contact, they will be damaged.

The influence of electromagnetic force must be considered in the element layout of single-phase, two-phase and three-phase circuits. MoSi2 heating elements are usually placed on both sides of the furnace or around the circle of the cylindrical furnace. Be sure not to connect adjacent components to the same power cord.

In two-phases or three-phases, the same rule applies. Two adjacent elements shall not be connected to a common voltage supply. Intermediate ground connection or Y- connection, the center of star connection can be connected to the terminal legs of adjacent components. The current flows in the same direction, the connecting points should be combined in such a way that the currents in the adjacent shanks of two MoSiz heating elements have a phase displacement of 120 degrees.

-22-

YT TORCH


- 21 -

YT TORCH

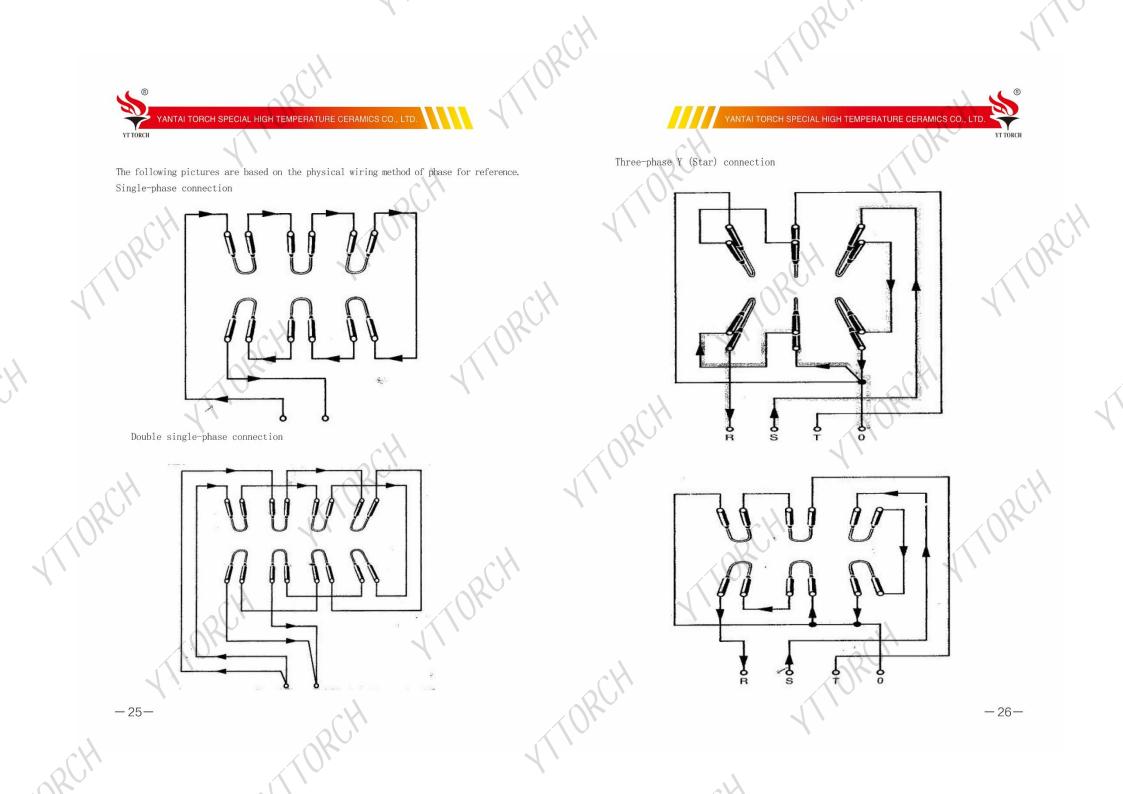
YANTAI TORCH SPECIAL HIGH TEMPERATURE CERAMICS CO., LTD.

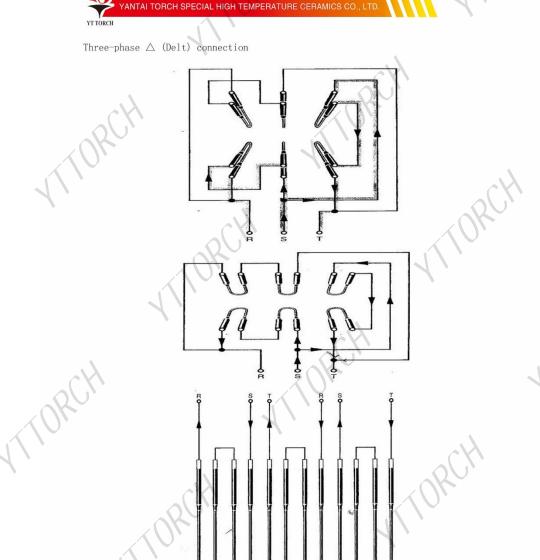
Wiring Diagram of MoSi2 Heating Element:

®

YANTAI TORCH SPECIAL HIGH TEMPERATURE CERAMICS CO., LTD.

YT TORCH


Consider that the current enters in R and flows to S and T. Momentarily no current is passing through the leg ST. Then the same procedure starting from S and T is followed.


Delta-connected arrangement

Consider that the current enters in S and flows through $0\ {\rm to}\ R.$ Then the same procedure starting from T and then R is followed.

Star connected arrangement

-24-

R

-27-

YANTAI TORCH SPECIAL HIGH TEMPERATURE CERAMICS CO., LTD.

YT TORCH

4. Temperature Measuring Element

The type of thermocouple used for temperature control depends on the furnace temperature. K-type thermocouple has good stability below 1200 °C and can be used in many heat treatment furnaces. Temperature measurements above 1200°C usually use thermocouples made of platinum - platinum / rhodium.

Thermocouples age faster the higher the furnace temperature is. Problems with temperature corrosion and overheated MoSi2 elements are often related to ageing thermocouples. By alloying platinum with rhodium, the usable temperature increases. The high content of rhodium in both shanks gives the highest permissible furnace temperature.

When the rhodium content is increased, the electromotive force decreases and this affects the accuracy of the measurement. When thermocouples are utilized at the maximum classifying temperature, it is important to check the electromotive force frequently in order to avoid increased furnace temperature due to the ageing. In the high-temperature furnace operating at the furnace temperature above 1750 °C, using Pt / 20% Rh-Pt / 40% Rh, it has been found that the electromotive force will be reduced significantly after only 4-5 hours at the furnace temperature. By the time this has occurred, the thermocouple has become more stable and the change is slower with time. This thermocouple has a low thermoelectric output and small changes can lead to large variations in the furnace temperature and element temperature with subsequent element problems.

For high-temperature furnace, we recommend two thermocouple positions close to each other in the roof. One thermocouple for the controller and the SCR, the other to to check the operating thermocouple and the actual furnace temperature.

	Maximum Opera	ating Temperature
h	Countinuous° C	Intermittent ° C
Pt/ Pt 10 Rh, Graduation S	1400	1650
Pt/ Pt 13 Rh, Graduation R	1400	1650
Pt6Rh/Pt30Rh,GraduationB	1500	1800
Pt 20 Rh / Pt 40 Rh	1600	1800

VI. Electrical Parameters of Yantai Torch MoSi₂ Electirical Heating Elements

-corc Power: W Working Voltage: V Heating Element Temperature: 1550°C Heating Element Curren: 58A

-29-

Furnace Temperatur: 1300°C Surface Load: 16W/cm²

Element Resistance (1550°C): Ω Center Distance: 25mm

C

VT TORCH

1700Time #31#611_Shene Werking Berneman	
	End Length Le→

HOL FIN	n reng u									0)	1	
mm	50	75	100	125	140	160	180	200	225	250	280	315	350	400
<	260	335	410	486	531	591	652	712	787	863	953	1058	1164	1315
100	0.077	0.100	0.122	0.144	0.158	0.176	0.194	0.212	0.234	0.256	0.283	0.315	0.346	0.391
)	4.5	5.8	7.1	8.4	9.2	10.2	11.2	12.3	13.6	14.9	16.4	18.2	20.1	22.7
	272	347	422	498	543	603	664	724	66L	875	965	1070	1176	1327
125	0.081	0.103	0.126	0.148	0.161	0.179	0.197	0.215	0.238	0.260	0.287	0.318	0.350	0.394
	4.7	6.0	7.3	8.6	9.4	10.4	11.4	12.5	13.8	15.1	16.6	18.5	20.3	22.9
	284	359	434	510	555	615	676	736	811	887	977	1082	1188	1339
150	0.084	0.107	0.129	0.152	0.165	0.183	0.201	0.219	0.241	0.264	0.290	0.322	0.353	0.398
	4.9	6.2	7.5	8.8	9.6	10.6	11.6	12.7	14.0	15.3	16.8	18.7	20.5	23.1
	309	384	459	535	580	640	701	761	836	912	1002	1107	1213	1364
200	0.092	0.114	0.137	0.159	0.172	0.190	0.208	0.226	0.249	0.271	0.298	0.329	0.361	0.405
	5.3	6.6	7.9	9.2	10.0	11.0	12.1	13.1	14.4	15.7	17.3	19.1	20.9	23.5
	333	408	483	559	604	664	725	785	860	936	1026	1131	1237	1388
250	0.099	0.121	0.144	0.166	0.180	0.197	0.215	0.233	0.256	0.278	0.305	0.336	0.368	0.413
	5.7	7.0	8.3	9.6	10.4	11.5	12.5	13.5	14.8	16.1	17.7	19.5	21.3	23.9
	354	429	504	580	625	685	746	806	881	957	1047	1152	1258	1409
300	0.105	0.128	0.150	0.172	0.186	0.204	0.222	0.240	0.262	0.284	0.311	0.343	0.374	0.419
	6.1	7.4	8.7	10.0	10.8	- 11.8	12.9	13.9	15.2	16.5	18.1	19.9	21.7	24.3
	376	451	526	602	647	707	768	828	903	679	1069	1174	1280	1431
350	0.112	0.134	0.156	0.179	0.192	0.210	0.228	0.246	0.268	0.291	0.318	0.349	0.380	0.425
	6.5	7.8	9.1	10.4	11.2	12.2	13.2	14.3	15.6	16.9	18.4	20.2	22.1	24.7
	400	475	550	626	671	731	792	852	927	1003	1093	1198	1304	1455
400	0.119	0.141	0.164	0.186	0.199	0.217	0.235	0.253	0.276	0.298	0.325	0.356	0.388	0.432
	6.9	8.2	9.5	10.8	11.6	12.6	13.6	14.7	16.0	17.3	18.8	20.7	22.5	25.1
	423	498	573	649	694	754	815	875	950	1026	1116	1221	1327	1478
450	0.126	0.148	0.170	0.193	0.206	0.224	0.242	0.260	0.282	0.305	0.332	0.363	0.394	0.439
	7.3	8.6	9.6	11.2	12.0	13.0	14.0	15.1	16.4	17.7	19.2	21.1	22.9	25.5
	446	521	596	672	717	TTT	838	898	973	1049	1139	1244	1350	1501
500	0.132	0.155	0.177	0.200	0.213	0.231	0.249	0.267	0.289	0.312	0.339	0.370	0.401	0.446
	7.7	9.0	10.3	11.6	12.4	13.4	14.4	15.5	16.8	18.1	19.6	21.5	23.3	25.9

~ORC+

YANTAI TORCH SPECIAL HIGH TEMPERATURE CERAMICS CO., LTD

Cold End Length Lu \rightarrow

YANTAI TORCH SPECIAL HIGH TEMPERATURE CERAMICS CO., LTD YT TORCH

RU,

					_		-																	$\left(\right)$	5	~				YT	TORCH	I
)°C): Ω			500	2138	0.264	23.8	2151	0.266	23.9	2163	0.267	24.0	0170	24.3	2214	0.273	24.6	2245	0.277	24.9	2269	0.280	25.2	+677.	0.283	1813	0.224	20.1	1838	0.227	+.07
	e (1550	25mm		450	1937	0.239	21.5	1950	0.241	21.7	1962	0.242	21.8	00/1	22.1	2013	0.249	22.4	2044	0.252	22.7	2068	0.255	23.0	2095	0.258	1662	0.205	18.5	1687	0.208	
	Element Resistance (1550°C): Ω	Center Distance: 25mm	ters	400	1736	0.214	19.3	1749	0.216	19.4	1761	0.217	1787	1001	157.0	1812	0.224	20.1	1843	0.228	20.5	1867	0.231	20.7	1892	0.234 21.0	1512	0.187	16.8	1537	0.190	RU
	ement R	nter Dis	rame	350	1535	0.190	17.1	1548	0.191	17.2	1560	0.193	1586	0.106	17.6	1611	0.199	17.9	1642	0.203	18.2	1666	0.206	1.01	1691	0.209	1361	0.168	15.1	1386	171.0	tion
	EI	Cer	g Par	315	1395	0.172	15.5	1408	0.174	15.6	1420	0.175	8.01	0.179	16.1	1471	0.182	16.3	1502	0.185	16.7	1526	0.188	17.0	1661	0.191	1255	0.155	13.9	1280	0.158	14.2
	1300°C	12	rking	280	1254	0.155	13.9	1267	0.156	14.1	1279	0.158	1305	1910	14.5	1330	0.164	14.8	1361	0.168	15.1	1385	0.171	15.4	1410	0.174	1150	0.142	12.8	1175	0.145	Tet
	eratur:	16W/cn	e Wo	250	1133	0.140	12.6	1146	0.142	12.7	1158	0.143	1184	0.146	13.2	1209	0.149	13.4	1240	0.153	13.8	1264	0.156	14.0	1289	0.159	1060	0.131	11.8	1085	0.134	1.71
	Furnace Temperatur: 1300°C	Surface Load: 16W/cm ²	1700Type $\Phi 4/\Phi 9$ U-Shape Working Parameters	225	1033	0.128	11.5	1046	0.129	11.6	1058	0.131	11.8	0.124	12.0	1109	0.137	12.3	1140	0.141	12.7	1164	0.144	12.9	6811	0.147	984	0.122	10.9	1009	0.125	7.11
	Furna	Surfa	U-S	200	932	0.115	10.4	945	0.117	10.5	957	0.118	0.01	1010	10.9	1008	0.124	11.2	1039	0.128	11.5	1063	0.131	1000	1088	0.134	906	0.112	10.1	934	0.115	10.4
	2	ge: V	6 \$\$	180	852	0.105	9.5	865	0.107	9.6	877	0.108	9.7	1110	10.0	928	0.115	10.3	959	0.118	10.7	983	0.121	10.9	1008	0.124	849	0.105	9.4	874	0.108	1.6
.1	Power: W	Working Voltage: V	6 04	160	772	0.095	8.6	785	0.097	8.7	L6L	0.098	8.9	0100	9.1	848	0.105	9.4	879	0.108	9.8	903	0.111	10.0	876	0.115	788	760.0	8.8	813	0.100	0.6
X		Workir	Typ	140	169	0.085	7.7	704	0.087	7.8	716	0.088	0.8	2000	8.2	767	0.095	8.5	798	0.099	8.9	822	0.102	1.6	84/	0.105	728	060.0	8.1	753	0.093	4
	1550°C		1700	125	631	0.078	7.0	644	0.080	7.2	656	180.0	(8)	700	7.6	707	0.087	7.9	738	0.091	8.2	762	0.094	C.8	/8/	0.097 8 7	683	0.084	7.6	708	0.087	61
	rature:	n: 90A	-	100	531	0.065	5.9	544	0.067	6.0	556	690.0	2.0	700	410.0	607	0.075	6.7	638	0.079	7.1	662	0.082	7.4	08/	0.085 7.6	607	0.075	6.7	632	0.078	0.7
	t Tempe	t Curre	th Le↓	75	430	0.053	4.8	443	0.055	4.9	455	0.056	1.0	1040	5.3	506	0.062	5.6	537	0.066	6.0	561	0.069	6.2	080	0.072	532	0.066	5.9	557	690:0	7:0
	Elemen	Heating Element Curren: 90A	Hot End Length Le	50	330	0.041	3.7	343	0.042	3.8	355	0.044	381	0.047	4.2	406	0.050	4.5	437	0.054	4.9	461	0.057	1.0	480	0.060	457	0.056	5.1	482	0.059	to
	Heating Element Temperature: 1550°C	Heating	Hot En	mm		100			125			150		200	3		250			300			350		007	400		450			500	
OP	C	Ķ		С	old.	l Er	nd	Ler	ngth	1	Lu	→		4	1	<			2										-	- 3	80-	-

 λ

TORCH

 $\sqrt{2}$

Power: W Working Voltage: V Heating Element Temperature: 1550°C Heating Element Curren: 160A

-31-

Furnace Temperature: 1300°C Surface Load: 16W/cm²

Element Resistance (1550°C); Ω Center Distance: 50mm

~

YT TORCH

1700Type $\Phi 6/\Phi 12$ U-Shape Working Parameters

	1000	6475	0.253	40.5	6515	0.255	40.7	6555	0.256	41.0	6575	0.257	41.1	6595	0.258	41.2	6635	0.259	41.5	6675	0.261	41.7	6715	0.262	42.0	6755	0.264	42.2	6795	0.265	42.5	6885	0.269	43.0	
	900	5850	0.229	36.6	5890	0.230	36.8	5930	0.232	37.1	5950	0.232	37.2	5970	0.233	37.3	6010	0.235	37.6	6050	0.236	37.8	6090	0.238	38.1	6130	0.239	38.3	6170	0.241	38.6	6260	0.245	39.1	
0	800	5224	0.204	32.7	5264	0.206	32.9	5304	0.207	33.2	5324	0.208	33.3	5344	0.209	33.4	5384	0.210	33.7	5424	0.212	33.9	5464	0.213	34.2	5504	0.215	34.4	5544	0.217	34.7	5634	0.220	35.2	
D	710	4661	0.182	29.1	4701	0.184	29.4	4741	0.185	29.6	4761	0.186	29.8	4781	0.187	29.9	4821	0.188	30.1	4861	0.190	30.4	4901	0.191	30.6	4941	0.193	30.9	4981	0.195	31.1	5071	0.198	31.7	
	670	4411	0.172	27.6	4451	0.174	27.8	4491	0.175	28.1	4511	0.176	28.2	4531	0.177	28.3	4571	0.179	28.6	4611	0.180	28.8	4651	0.182	29.1	4691	0.183	29.3	4731	0.185	29.6	4821	0.188	30.1	0
	630	4161	0.163	26.0	4201	0.164	26.3	4241	0.166	26.5	4261	0.166	26.6	4281	0.167	26.8	4321	0.169	27.0	4361	0.170	27.3	4401	0.172	27.5	4441	0.173	27.8	4481	0.175	28.0	4571	0.179	28.6	
	560	3723	0.145	23.3	3763	0.147	23.5	3803	0.149	23.8	3823	0.149	23.9	3843	0.150	24.0	3883	0.152	24.3	3923	0.153	24.5	3963	0.155	24.8	4003	0.156	25.0	4043	0.158	25.3	4133	0.161	25.8	
	500	3348	0.131	20.9	3388	0.132	21.2	3428	0.134	21.4	3448	0.135	21.5	3468	0.135	21.7	3508	0.137	21.9	3548	0.139	22.2	3588	0.140	22.4	3628	0.142	22.7	3668	0.143	22.9	3758	0.147	23.5	
	450	3035	0.119	19.0	3075	0.120	19.2	3115	0.122	19.5	3135	0.122	19.6	3155	0.123	19.7	3195	0.125	20.0	3235	0.126	20.2	3275	0.128	20.5	3315	0.129	20.7	3355	0.131	21.0	3445	0.135	21.5	
;	400	2722	0.106	17.0	2762	0.108	17.3	2802	0.109	17.5	2822	0.110	17.6	2842	0.111	17.8	2882	0.113	18.0	2922	0.114	18.3	2962	0.116	18.5	3002	0.117	18.8	3042	0.119	19.0	3132	0.122	19.6	
l I	350	2410	0.094	15.1	2450	0.096	15.3	2490	0.097	15.6	2510	0.098	15.7	2530	0.099	15.8	2570	0.100	16.1	2610	0.102	16.3	2650	0.103	16.6	2690	0.105	16.8	2730	0.107	17.1	2820	0.110	17.6	
	300	2097	0.082	13.1	2137	0.083	13.4	2177	0.085	13.6	2197	0.086	13.7	2217	0.087	13.9	2257	0.088	14.1	2297	060.0	14.4	2337	160.0	14.6	2377	0.093	14.9	2417	0.094	15.1	2507	0.098	15.7	
	250	1784	0.070	11.2	1824	0.071	11.4	1864	0.073	11.7	1884	0.074	11.8	1904	0.074	11.9	1944	0.076	12.2	1984	0.078	12.4	2024	0.079	12.7	2064	0.081	12.9	2104	0.082	13.2	2194	0.086	13.7	
	220	1596	0.062	10.0	1636	0.064	10.2	1676	0.065	10.5	1696	0.066	10.6	1716	0.067	10.7	1756	0.069	11.0	1796	0.070	11.2	1836	0.072	11.5	1876	0.073	11.7	1916	0.075	12.0	2006	0.078	12.5	
) 	200	1471	0.057	9.2	1511	0.059	9.4	1551	0.061	9.7	1571	0.061	9.8	1591	0.062	9.9	1631	0.064	10.2	1671	0.065	10.4	1711	0.067	10.7	1751	0.068	10.9	1791	0.070	11.2	1881	0.073	11.8	
↑	180	1346	0.053	8.4	1386	0.054	8.7	1426	0.056	8.9	1446	0.056	9.0	1466	0.057	9.2	1506	0.059	9.4	1546	0.060	9.7	1586	0.062	9.6	1626	0.064	10.2	1666	0.065	10.4	1756	0.069	11.0	
gth Le-	160	1221	0.048	7.6	1261	0.049	7.9	1301	0.051	8.1	1321	0.052	8.3	1341	0.052	8.4	1381	0.054	8.6	1421	0.056	8.9	1461	0.057	9.1	1501	0.059	9.4	1541	0.060	9.6	1631	0.064	10.2	
End Length	125	1002	0.039	6.3	1042	0.041	6.5	1082	0.042	6.8	1102	0.043	6.9	1122	0.044	7.0	1162	0.045	7.3	1202	0.047	7.5	1242	0.049	7.8	1282	0.050	8.0	1322	0.052	8.3	1412	0.055	8.8	
Hot Er			150	Ì		200			250			280			300			350			400		Î	450			500			560			650		
7	_	old	Er	nd	Le	ng	th	L	u ·	-																									

YANTAI TORCH SPECIAL HIGH TEMPERATURE CERAMICS CO., LTD.

Heating Element Temperature: 1550°C Heating Element Curren: 160A Wo

Furnace Temperature: 1300°C Surface Load: 16W/cm² Power: W Working Voltage: V

Element Resistance (1550°C); Q Center Distance; 150mm

TORCH

4 Ó 1410 f

 λ

		_(-	ζ														/	~	2	ý					YT 1	FORC	1
_		2	0		-	10		-	2		~	~		-	•					~	_			~		~	20	
	750	9557	0.373	59.7	9597	0.375	60.0	9637	0.376	60.2	9677	0.378	60.5	696	0.379	60.6	7179	0.380	60.7	9753	0.381	61.0	9793	0.383	61.2	9853	0.385	61.6
	700	8954	0.350	56.0	8994	0.351	56.2	9034	0.353	56.5	9074	0.354	56.7	9094	0.355	56.8	9114	0.356	57.0	9150	0.357	57.2	9190	0.359	57.4	9250	0.361	57.8
eters	650	8351	0.326	52.2	8391	0.328	52.4	8431	0.329	52.7	8471	0.331	52.9	8491	0.332	53.1	8511	0.332	53.2	8547	0.334	53.4	8587	0.335	53.7	8647	0.338	54.0
aram	600	7748	0.303	48.4	7788	0.304	48.7	7828	0.306	48.9	7868	0.307	49.2	7888	0.308	49.3	7908	0.309	49.4	7944	0.310	49.7	7984	0.312	49.9	8044	0.314	50.3
ing P	500	6542	0.256	40.9	6582	0.257	41.1	6622	0.259	41.4	6662	0.260	41.6	6682	0.261	41.8	6702	0.262	41.9	6738	0.263	42.1	6778	0.265	42.4	6838	0.267	42.7
Work	450	5939	0.232	37.1	5979	0.234	37.4	6019	0.235	37.6	6059	0.237	37.9	6079	0.237	38.0	6609	0.238	38.1	6135	0.240	38.3	6175	0.241	38.6	6235	0.244	39.0
hape	410	5457	0.213	34.1	5497	0.215	34.4	5537	0.216	34.6	5577	0.218	34.9	5597	0.219	35.0	5617	0.219	35.1	5653	0.221	35.3	5693	0.222	35.6	5753	0.225	36.0
N-S	355	4794	0.187	30.0	4834	0.189	30.2	4874	0.190	30.5	4914	0.192	30.7	4934	0.193	30.8	4954	0.194	31.0	4990	0.195	31.2	5030	0.196	31.4	5090	0.199	31.8
1700Type $\Phi 6/\Phi 12$ W-Shape Working Parameters	315	4312	0.168	26.9	4352	0.170	27.2	4392	0.172	27.4	4432	0.173	27.7	4452	0.174	27.8	4472	0.175	27.9	4508	0.176	28.2	4548	0.178	28.4	4608	0.180	28.8
be ⊕6	280	3890	0.152	24.3	3930	0.154	24.6	3970	0.155	24.8	4010	0.157	25.1	4030	0.157	25.2	4050	0.158	25.3	4086	0.160	25.5	4126	0.161	25.8	4186	0.164	26.2
00Tyl	250	3528	0.138	22.0	3568	0.139	22.3	3608	0.141	22.5	3648	0.142	22.8	3668	0.143	22.9	3688	0.144	23.0	3724	0.145	23.3	3764	0.147	23.5	3824	0.149	23.9
17	200	2925	0.114	18.3	2965	0.116	18.5	3005	0.117	18.8	3045	0.119	19.0	3065	0.120	19.2	3085	0.121	19.3	3121	0.122	19.5	3161	0.123	19.8	3221	0.126	20.1
104 Bad Longth	180	2684	0.105	16.8	2724	0.106	17.0	2764	0.108	17.3	2804	0.110	17.5	2824	0.110	17.6	2844	0.111	17.8	2880	0.112	18.0	2920	0.114	18.2	2980	0.116	18.6
Lot Bud	um		350			400			450			500			520	1		560			600			630			710	
	С	old	En	d L	eng	th	Lı	1 →						. (1													

R'"

YANTAI TORCH SPECIAL HIGH TEMPERATURE CERAMICS CO., LTD

-32-

YT TORCH

Power: W Working Voltage: V Heating Element Temperature: 1550° Heating Element Curren: 300A

-33-

TIL

R

Furnace Temperature: 1300°C Surface Load: 16W/cm²

. J

Element Resistance (1550°C); Ω Center Distance: 60mm

YT TORCH

1700Type $\Phi 9/\Phi 18$ U-Shape Working Parameters	800 900	
ame	710	1001
Para	600	2011
ting	560	0000
Vork	500	2002
pe V	450	1505
Sha	400	CLIP
-	350	1000
(Φ 1 8	300 350 400 450 500 560 600 710	0000
60	250	7000
lype	220	AFAF
00/	mm 125 160 180 200 220 250	
	180	0110
gth Le-	160	
Hot End Length Le→	125	
lot En	mm	

1000	9559	0.106	31.9	6096	0.107	32.0	9659	0.107	32.2	9679	0.108	32.3	9729	0.108	32.4	9779	0.109	32.6	9829	0.109	32.8	9879	0.110	32.9	9929	0.110	33.1	10019	0.111	33.4	10069	0.112	33.6	10169	0.113	33.9
900	8654	0.096	28.8	8704	760.0	29.0	8754	760.0	29.2	8774	760.0	29.2	8824	0.098	29.4	8874	0.099	29.6	8924	0.099	29.7	8974	0.100	29.9	9024	0.100	30.1	9114	0.101	30.4	9164	0.102	30.5	9264	0.103	30.9
800	7750	0.086	25.8	7800	0.087	26.0	7850	0.087	26.2	7870	0.087	26.2	7920	0.088	26.4	07970	0.089	26.6	8020	0.089	26.7	8070	060.0	26.9	8120	060.0	27.1	8210	0.091	27.4	8260	0.092	27.5	8360	0.093	27.9
710	6936	0.077	23.1	6986	0.078	23.3	7036	0.078	23.5	7056	0.078	23.5	7106	0.079	23.7	7156	0.080	23.9	7206	0.080	24.0	7256	0.081	24.2	7306	0.081	24.4	7396	0.082	24.7	7446	0.083	24.8	7546	0.084	25.2
600	5941	0.066	19.8	5991	0.067	20.0	6041	0.067	20.1	6061	0.067	20.2	6111	0.068	20.4	6161	0.068	20.5	6211	0.069	20.7	6261	0.070	20.9	6311	0.070	21.0	6401	0.071	21.3	6451	0.072	21.5	6551	0.073	21.8
560	5579	0.062	18.6	5629	0.063	18.8	5679	0.063	18.9	5699	0.063	19.0	5749	0.064	19.2	5799	0.064	19.3	5849	0.065	19.5	5899	0.066	19.7	5949	0.066	19.8	6039	0.067	20.1	6809	0.068	20.3	6189	0.069	20.6
500	5037	0.056	16.8	5087	0.057	17.0	5137	0.057	1.71	5157	0.057	17.2	5207	0.058	17.4	5257	0.058	17.5	5307	0.059	17.7	5357	0.060	17.9	5407	090.0	18.0	5497	0.061	18.3	5547	0.062	18.5	5647	0.063	18.8
450	4585	0.051	15.3	4635	0.051	15.4	4685	0.052	15.6	4705	0.052	15.7	4755	0.053	15.8	4805	0.053	16.0	4855	0.054	16.2	4905	0.054	16.3	4955	0.055	16.5	5045	0.056	16.8	5095	0.057	17.0	5195	0.058	17.3
400	4133	0.046	13.8	4183	0.046	13.9	4233	0.047	14.1	4253	0.047	14.2	4303	0.048	14.3	4353	0.048	14.5	4403	0.049	14.7	4453	0.049	14.8	4503	0.050	15.0	4593	0.051	15.3	4643	0.052	15.5	4743	0.053	15.8
350	3680	0.041	12.3	3730	0.041	12.4	3780	0.042	12.6	3800	0.042	12.7	3850	0.043	12.8	3900	0.043	13.0	3950	0.044	13.2	4000	0.044	13.3	4050	0.045	13.5	4140	0.046	13.8	4190	0.047	14.0	4290	0.048	14.3
300	3228	0.036	10.8	3278	0.036	10.9	3328	0.037	1.11	3348	0.037	11.2	3398	0.038	11.3	3448	0.038	11.5	3498	0.039	11.7	3548	0.039	11.8	3598	0.040	12.0	3688	0.041	12.3	3738	0.042	12.5	3838	0.043	12.8
250	2776	0.031	9.3	2826	0.031	9.4	2876	0.032	9.6	2896	0.032	9.7	2946	0.033	9.8	2996	0.033	10.0	3046	0.034	10.2	3096	0.034	10.3	3146	0.035	10.5	3236	0.036	10.8	3286	0.037	11.0	3386	0.038	11.3
220	2505	0.028	8.3	2555	0.028	8.5	2605	0.029	8.7	2625	0.029	8.7	2675	0.030	8.9	2725	0.030	9.1	2775	0.031	9.2	2825	0.031	9.4	2875	0.032	9.6	2965	0.033	9.6	3015	0.033	10.0	3115	0.035	10.4
200	2324	0.026	7.7	2374	0.026	7.9	2424	0.027	8.1	2444	0.027	8.1	2494	0.028	8.3	2544	0.028	8.5	2594	0.029	8.6	2644	0.029	8.8	2694	0.030	9.0	2784	0.031	9.3	2834	0.031	9.4	2934	0.033	9.8
180	2143	0.024	7.1	2193	0.024	7.3	2243	0.025	7.5	2263	0.025	7.5	2313	0.026	7.7	2363	0.026	7.9	2413	0.027	8.0	2463	0.027	8.2	2513	0.028	8.4	2603	0.029	8.7	2653	0.029	8.8	2753	0.031	9.2
160	1962	0.022	6.5	2012	0.022	6.7	2062	0.023	6.9	2082	0.023	6.9	2132	0.024	7.1	2182	0.024	7.3	2232	0.025	7.4	2282	0.025	7.6	2332	0.026	7.8	2422	0.027	8.1	2472	0.027	8.2	2572	0.029	8.6
125	1646	0.018	5.5	1696	0.019	5.7	1746	0.019	5.8	1766	0.020	5.9	1816	0.020	6.1	1866	0.021	6.2	1916	0.021	6.4	1966	0.022	6.6	2016	0.022	6.7	2106	0.023	7.0	2156	0.024	7.2	2256	0.025	7.5
mm	Id	200			250			280			300			350			400			450			500			560			650			700			800	

YANTAI TORCH SPECIAL HIGH TEMPERATURE CERAMICS CO., LTD.

Cold End Length Lu →

TINRCH

S YANTAI TORCH SPECIAL HIGH TEMPERATURE CERAMICS CO., LTD YT TORCH

RU,

						~	$\overline{\lambda}$													0	K			ŝ	YT TOR	СН				
1		G		2		7	<u>)</u>											4	\square				_							
		550°C):	_	<	800	15354	0.171	51.2	15404	0.171	51.3	15454	0.172	51.5	15504	0.172	51.7	15594	0.173	52.0	15644	0.174	52.1	15744	0.175	52.5				
		tance (1	ice: 1901		720	13907	0.155	46.4	13957	0.155	46.5	14007	0.156	46.7	14057	0.156	46.9	14147	0.157	47.2	14197	0.158	47.3	14297	0.159	47.7	0	C	?	
		Element Resistance (1550°C): Ω	er Distan	eters	600	11736	0.130	39.1	11786	0.131	39.3	11836	0.132	39.5	11886	0.132	39.6	11976	0.133	39.9	12026	0.134	40.1	12126	0.135	40.4),			
		Eleme	Cente	aram	560	11013	0.122	36.7	11063	0.123	36.9	11113	0.123	37.0	11163	0.124	37.2	11253	0.125	37.5	11303	0.126	37.7	11403	0.127	38.0				
		1300°C	-	ing Pa	500	9928	0.110	33.1	9778	0.111	33.3	10028	0.111	33.4	10078	0.112	33.6	10168	0.113	33.9	10218	0.114	34.1	10318	0.115	34.4				
		perature:	(d: 10%/ CI	Work	450	9023	0.100	30.1	9073	0.101	30.2	9123	0.101	30.4	9173	0.102	30.6	9263	0.103	30.9	9313	0.103	31.0	9413	0.105	31.4				
* 		Furnace Temperature: 1300°C	riace Loa	Jape	400	8119	060.0	27.1	8169	0.091	27.2	8219	0.091	27.4	8269	0.092	27.6	8359	0.093	27.9	8409	0.093	28.0	8509	0.095	28.4				
			ne A :	N-S	350	7215	0.080	24.0	7265	0.081	24.2	7315	0.081	24.4	7365	0.082	24.5	7455	0.083	24.8	7505	0.083	25.0	7605	0.084	25.3				
_	Χ	Power, W	g voltage	/Φ 18	300	6310	0.070	21.0	6360	0.071	21.2	6410	0.071	21.4	6460	0.072	21.5	6550	0.073	21.8	6600	0.073	22.0	6700	0.074	22.3	2			
	X		WOLKIN	1700Type Φ9/Φ18 W-Shape Working Parameters	250	5406	0.060	18.0	5456	0.061	18.2	5506	0.061	18.4	5556	0.062	18.5	5646	0.063	18.8	5696	0.063	19.0	5796	0.064	19.3	, ``			
		Heating Element Temperature: 1550°C	VO	00Typ	220	4864	0.054	16.2	4914	0.055	16.4	4964	0.055	16.5	5014	0.056	16.7	5104	0.057	17.0	5154	0.057	17.2	5254	0.058	17.5				
-		Heating Element Temperature:	urren: au	170 •→	200	4502	0:050	15.0	4552	0.051	15.2	4602	0.051	15.3	4652	0.052	15.5	4742	0.053	15.8	4792	0.053	16.0	4892	0.054	16.3				
		Element T	n nuement	Hot End Length Le→	180	4140	0.046	13.8	4190	0.047	14.0	4240	0.047	14.1	4290	0.048	14.3	4380	0.049	14.6	4430	0.049	14.8	4530	0.050	15.1				
		Heating H	neating i	Hot End	mm		400			450			500			560	(K	650			700			800					
	OP	C			Co	ld E	nd Le	engt	h I	.u →			Ĭ			2								_	34					
()																														

2

TORCH

 \mathcal{N}

Power: W Working Voltage: V Heating Element Temperature: 1550°C Heating Element Curren: 470A

-35-

Furnace Temperature: 1300°C Surface Load: 16W/cm²

Element Resistance (1550°C); Ω Center Distance: 80mm

 \sim

YT TORCH

1700Type 012/024 U-Shape Working Parameters

Hot	Hot End Length Le→		i v u u y pe	ypd	0+7+171+	111		apa			alall	alailicicio	•	
	n 180	225	250	300	350	400	450	500	560	650	700	800	900	1000
		3416	3717	4320	4923	5526	6128	6731	7455	8540	9143	10349	11554	12760
280	Â	0.016	0.018	0.020	0.023	0.026	0.029	0.032	0.035	0.040	0.043	0.049	0.055	0.060
	6.2	7.4	8.1	9.4	10.7	12.0	13.3	14,6	16.2	18.6	19.9	22.5	25.1	27.7
	Ca	3486	3787	4390	4993	5596	6198	6801	7525	8610	9213	10419	11624	12830
315	-	0.016	0.017	0.020	0.023	0.025	0.028	0.031	0.034	0.039	0.042	0.047	0.053	0.058
	6.3	7.4	8.1	9.3	10.6	11.9	13.2	14.5	16.0	18.3	19.6	22.2	24.7	27.3
	3013	3556	3857	4460	5063	5666	6268	6871	7595	8680	9283	10489	11694	12900
350	0 0.014	0.016	0.017	0.020	0.023	0.026	0.028	0.031	0.034	0.039	0.042	0.047	0.053	0.058
	6.4	7.6	8.2	9.5	10.8	12.1	13.3	14.6	16.2	18.5	19.8	22.3	24.9	27.4
	3093	3636	3937	4540	5143	5746	6348	6951	7675	8760	9363	10569	11774	12980
400	0 0.014	0.016	0.018	0.021	0.023	0.026	0.029	0.031	0.035	0.040	0.042	0.048	0.053	0.059
	6.6	7.7	8.4	9.7	10.9	12.2	13.5	14.8	16.3	18.6	19.9	22.5	25.1	27.6
	3173	3716	4017	4620	5223	5826	6428	7031	7755	8840	9443	10649	11854	13060
450	0 0.014	0.017	0.018	0.021	0.024	0.026	0.029	0.032	0.035	0.040	0.043	0.048	0.054	0.059
	6.8	7.9	8.5	9.8	TH	12.4	13.7	15.0	16.5	18.8	20.1	22.7	25.2	27.8
	3253	3796	4097	4700	5303	5906	6508	7111	7835	8920	9523	10729	11934	13140
500	0 0.015	0.017	0.019	0.021	0.024	0.027	0.029	0.032	0.035	0.040	0.043	0.049	0.054	0.059
	6.9	8.1	8.7	10.0	11.3	12.6	13.8	15.1	16.7	19.0	20.3	22.8	25.4	28.0
	3343	3886	4187	4790	5393	5996	6598	7201	7925	9010	9613	10819	12024	13230
560	0 0.015	0.018	0.019	0.022	0.024	0.027	0.030	0.033	0.036	0.041	0.044	0.049	0.054	090.0
	7.1	8.3	8.9	10.2	11.5	12.8	14.0	15.3	16.9	19.2	20.5	23.0	25.6	28.1
	3413	3956	4257	4860	5463	6066	6668	7271	7995	9080	9683	10889	12094	13300
600	0 0.015	0.018	0.019	0.022	0.025	0.027	0.030	0.033	0.036	0.041	0.044	0.049	0.055	0.060
	7.3	8.4	9.1	10.3	11.6	12.9	14.2	15.5	17.0	19.3	20.6	23.2	25.7	28.3
	3493	4036	4337	4940	5543	6146	6748	7351	8075	9160	9763	10969	12174	13380
650	0 0.016	0.018	0.020	0.022	0.025	0.028	0.031	0.033	0.037	0.041	0.044	0.050	0.055	0.061
	7.4	8.6	9.2	10.5	11.8	13.1	14.4	15.6	17.2	19.5	20.8	23.3	25.9	28.5
	3573	4116	4417	5020	5623	6226	6828	7431	8155	9240	9843	11049	12254	13460
710	0 0.016	0.019	0.020	0.023	0.025	0.028	0.031	0.034	0.037	0.042	0.045	0.050	0.055	0.061
	7.6	8.8	9.4	10.7	12.0	13.2	14.5	15.8	17.4	19.7	20.9	23.5	26.1	28.6
										0				

-ORC.h

YANTAI TORCH SPECIAL HIGH TEMPERATURE CERAMICS CO., LTD

TORCH

2

Cold End Length Lu →

YT TORCH YANTAI TORCH SPECIAL HIGH TEMPERATURE CERAMICS CO., LTD

RU,

				0	U)								
		50°C): Ω	1	720	18564	0.084	39.5	18644	0.084	39.7	18734	0.085	39.9	18804	0.085	40.0	18884	0.085	40.2	18964	0.086	40.3				
		stance (15 nce: 180mm		650	16876	0.076	35.9	16956	0.077	36.1	17046	0.077	36.3	17116	0.077	36.4	17196	0.078	36.6	17276	0.078	36.8	5	C	<i>, , , , , , , , , ,</i>	
		Element Resistance (1550°C); Ω Center Distance, 180mm	neters	600	15671	0.071	33.3	15751	0.071	33.5	15841	0.072	33.7	15911	0.072	33.9	15991	0.072	34.0	16071	0.073	34.2	0			
Ņ			Paran	560	14706	0.067	31.3	14786	0.067	31.5	14876	0.067	31.7	14946	0.068	31.8	15026	0.068	32.0	15106	0.068	32.1				
		ıre: 1300° V/cm ²	rking	500	13259	090.0	28.2	13339	0.060	28.4	13429	0.061	28.6	13499	0.061	28.7	13579	0.061	28.9	13659	0.062	29.1				
		Furnace Temperature: 1300°C Surface Load: 16W/cm ²	oe Wo	450	12053	0.055	25.6	12133	0.055	25.8	12223	0.055	26.0	12293	0.056	26.2	12373	0.056	26.3	12453	0.056	26.5				
		Furnace Surface	-Shap	400	10848	0.049	23.1	10928	0.049	23.3	11018	0.050	23.4	11088	0.050	23.6	11168	0.051	23.8	11248	0.051	23.9				
	Ĺ	Power: W g Voltage: V	24 W	350	9642	0.044	20.5	9722	0.044	20.7	9812	0.044	20.9	9882	0.045	21.0	9962	0.045	21.2	10042	0.045	21.4				
	1	Power: W Working Voltage: V	⊅12/⊄	300	8436	0.038	17.9	8516	0.039	18.1	8606	0.039	18.3	8676	0.039	18.5	8756	0.040	18.6	8836	0.040	18.8	6			
			1700Type Φ12/Φ24 W-Shape Working Parameters	250	7230	0.033	15.4	7310	0.033	15.6	7400	0.034	15.7	7470	0.034	15.9	7550	0.034	16.1	7630	0.035	16.2				
		Heating Element Temperature: 1550°C Heating Element Curren: 470A	1700	225	6627	0.030	14,1	6707	0.030	14.3	6797	0.031	14.5	6867	0.031	14.6	6947	0.031	14.8	7027	0.032	15.0				
		lement Ter lement Cur	1 Hot End Length Le→	180	5542	0.025	11.8	5622	0.025	12.0	5712	0.026	12.2	5782	0.026	12.3	5862	0.027	12.5	5942	0.027	12.6				
		Heating E Heating E	Hot End	mm		450			500			560		0	600			650			710					
	(06	C		Cold	l End	Leng	gth	Lu -	*		Ý		7	JL							-:	36-	-			

 λ

 \mathcal{N}

Furnace Temperature: 1600°C Surface Load: 11.5W/cm² Power: W Working Voltage: V VITOR! Heating Element Temperature: 1700°C Heating Element Curren: 47A Wor

Y.

Element Resistance (1700°C); Ω Center Distance: 25mm

YT TORCH

cX	450
ters	400
ame	355
Par	315
Working Parameters	280
Wor	250
-Shape /	225
-Sh	200
₽6 U	180
Φ3/Φ6	160
ype o	140
800T	125
18 հ Le→	100
d Lengtl	75
End	æ

Hot

-37-

R

-	End L		¥ In →	4	4	16	4	2	2	3(Ř	
	20	75	100	125	140	160	180	200	250	300	350	
¢/	198 0.089 4.2	204 0.093 4.4	211 0.096 4.5	218 0.099 4.6	222 0.101 4.7	228 0.103 4.8	233 0.105 5.0	238 0. 108 5. 1	252 0.114 5.4	266 0.120 5.7	279 0.126 5.9	
001	255 0.115 5.4	262 0.118 5.6	268 0.121 5.7	275 0.125 5.9	275 0.125 5.9	285 0.129 6.1	290 0.131 6.2	296 0.134 6.3	309 0.140 6.6	323 0.146 6.9	336 0.152 7.2	
C71	312 0.141 6.6	319 0.144 6.8	325 0.147 6.9	332 0.150 7.1	332 0.150 7.1	342 0.155 7.3	347 0.157 7.4	353 0.160 7.5	366 0.166 7.8	380 0.172 8.1	393 0.178 8.4	
140	346 0.157 7.4	353 0.160 7.5	360 0.163 7.7	367 0. 166 7. 8	367 0. 166 7. 8	376 0.170 8.0	381 0.173 8.1	387 0.175 8.2	401 0.181 8.5	414 0.187 8.8	428 0.194 9.1	
100	392 0.177 8.3	399 0.180 8.5	405 0.184 8.6	412 0.187 8.8	412 0. 187 8. 8	422 0.191 9.0	427 0.193 9.1	433 0.196 9.2	446 0.202 9.5	460 0.208 9.8	473 0.214 10.1	
180	437 0.198 9.3	444 0.201 9.5	451 0.204 9.6	458 0.207 9.7	458 0.207 9.7	467 0.212 9.9	473 0.214 10.1	478 0.217 10.2	492 0.223 10.5	506 0.229 10.8	519 0.235 11.0	
700	483 0.219 10.3	490 0.222 10.4	497 0.225 10.6	504 0.228 10.7	504 0.228 10.7	513 0. 232 10. 9	519 0. 235 11. 0	524 0.237 11.1	538 0. 243 11. 4	551 0.250 11.7	565 0.256 12.0	
C77	540 0.245 11.5	547 0.248 11.6	554 0.251 11.8	561 0.254 11.9	561 0.254 11.9	570 0.258 12.1	576 0.261 12.2	581 0.263 12.4	595 0.269 12.7	608 0. 275 12. 9	622 0.282 13.2	
NC7	597 0.270 12.7	604 0.274 12.9	611 0.277 13.0	618 0.280 13.1	618 0.280 13.1	627 0.284 13.3	633 0.286 13.5	638 0.289 13.6	652 0.295 13.9	665 0.301 14.2	679 0.307 14.4	
780	666 0.301 14.2	673 0.305 14.3	679 0. 308 14. 5	686 0.311 14.6	686 0.311 14.6	696 0.315 14.8	701 0.317 14.9	707 0.320 15.0	720 0.326 15.3	734 0.332 15.6	748 0.338 15.9	
615	746 0.338 15.9	753 0.341 16.0	759 0.344 16.2	766 0.347 16.3	766 0.347 16.3	776 0.351 16.5	781 0.354 16.6	787 0.356 16.7	800 0.362 17.0	814 0.368 17.3	827 0.375 17.6	
200	837 0.379 17.8	844 0.382 18.0	851 0.385 18.1	858 0.388 18.2	858 0.388 18.2	867 0.393 18.4	873 0.395 18.6	878 0. 397 18. 7	892 0.404 19.0	905 0.410 19.3	919 0.416 19.5	λ
400	940 0.426 20.0	947 0.429 20.1	954 0.432 20.3	960 0.435 20.4	960 0.435 20.4	960 0.435 20.4	975 0, 442 20, 8	981 0.444 20.9	994 0.450 21.2	1008 0.456 21.4	1022 0.462 21.7	
004	1054 0.477 22.4	1061 0.480 22.6	1068 0.483 22.7	1075 0.486 22.9	1075 0.486 22.9	1075 0.486 22.9	1090 0.493 23:2	1095 0.496 23.3	1109 0.502 23.6	1122 0.508 23.9	1136 0.514 24.2	
nnc	1168 0.529 24.9	1175 0.532 25.0	1182 0. 535 25. 1	1189 0.538 25.3	1189 0.538 25.3	1198 0.542 25.5	1204 0.545 25.6	1209 0.547 25.7	1223 0.554 26.0	1236 0.560 26.3	1250 0.566 26.6	

YANTAI TORCH SPECIAL HIGH TEMPERATURE CERAMICS CO., LTD.

Cold End Length Lu \rightarrow

TINRCH

VT TORCH YANTAI TORCH SPECIAL HIGH TEMPERATURE CERAMICS CO., LTD

RU,

					\sim								K.		YT TORC	Н	
				0	5	×)				
		0°C): Ω	~	500	1481 0.302 21.2	1488 0.304 21.3	1495 0.305 21.4	1502 0.307 21.5	1506 0.307 21.5	1512 0.309 21.6	1518 0.310 21.7	1523 0.311 21.8	1537 0.314 22.0	1551 0.317 22.2	1565 0.319 22.4		
		170 (170 25mm	\sum	450	1336 0.273 19.1	1343 0.274 19.2	1350 0.276 19.3	1357 0.277 19.4	1361 0.278 19.4	1367 0.279 19.5	1372 0.280 19.6	1378 0.281 19.7	1392 0.284 19.9	1406 0.287 20.1	1420 0.290 20.3		Y.
		Resistar istance:	ters	400	1191 0.243 17.0	1198 0.244 17.1	1205 0.246 17.2	1212 0.247 17.3	1216 0.248 17.4	1222 0.249 17.5	1227 0.251 17.5	1233 0.252 17.6	1247 0.255 17.8	1261 0.257 18.0	1275 0.260 18.2	\mathcal{R}	<u> </u>
\mathcal{L}		Element Resistance (1700°C); Ω Center Distance: 25mm	Parameters	355	1060 0.216 15.1	1067 0.218 15.2	1074 0.219 15.3	1081 0.221 15.4	1086. 0.222 15.5	1091 0.223 15.6	1097 0.224 15.7	1103 0.225 15.8	1117 0.228 16.0	1131 0.231 16.2	1145 0.234 16.4		
, N			Par	315	944 0.193 13.5	951 0.194 13.6	958 0.196 13.7	965 0.197 13.8	970 0.198 13.9	975 0.199 13.9	981 0.200 14.0	986 0.201 14.1	1001 0.204 14.3	1015 0.207 14.5	1029 0.210 14.7		
		e: 1600' W/cm ²	king	280	843 0.172 12.0	850 0.173 12.1	857 0.175 12.2	864 0.176 12.3	868 0.177 12.4	874 0.178 12.5	879 0.179 12.6	885 0.181 12.6	899 0.183 12.8	913 0.186 13.0	927 0.189 13.2		
		Furnace Temperature: 1600°C Surface Load: 11.5W/cm ²	Wor	250	756 0.154 10.8	763 0.156 10.9	770 0.157 11.0	777 0.159 11.1	781 0.159 11.2	787 0.161 11.2	792 0.162 11.3	798 0.163 11.4	812 0.166 11.6	826 0.169 11.8	840 0.171 12.0		
		nace Ter face Lo	ape	225	683 0.139 9.8	690 0.141 9.9	697 0.142 10.0	704 0.144 10.1	709 0.145 10.1	714 0.146 10.2	720 0.147 10:3	725 0.148 10.4	739 0.151 10.6	753 0.154 10.8	767 0.157 11.0		
			HS-	200	611 0.125 8.7	618 0.126 8.8	625 0.128 8.9	632 0.129 9.0	636 0.130 9.1	642 0.131 9.2	647 0.132 9.2	653 0.133 9.3	667 0.136 9.5	681 0.139 9.7	695 0.142 9.9		
		Power: W Working Voltage: V	D 6 d	180	553 0.113 7.9	560 0.114 8.0	567 0.116 8.1	574 0.117 8.2	578 0.118 8.3	584 0.119 8.3	589 0.120 8.4	595 0.121 8.5	609 0.124 8.7	623 0.127 8.9	637 0.130 9.1		
	1	Pow rking V	Φ 4 /0	160	495 0.101 7.1	502 0.102 7.2	509 0.104 7.3	516 0.105 7.4	520 0.106 7.4	526 0.107 7.5	531 0.108 7.6	537 0.110 7.7	551 0.112 7.9	565 0.115 8.1	579 0.118 8.3		
			1800Type Φ4/Φ9 U-Shape Working	140	437 0.089 6.2	444 0.091 6.3	451 0.092 6.4	458 0.093 6.5	462 0.094 6.6	468 0.095 6.7	473 0.097 6.8	479 0.098 6.8	493 0.101 7.0	507 0.103 7.2	521 0.106 7.4		
		ure: 17 70A	00T)	125	393 0.080 5.6	400 0.082 5.7	407 0.083 5.8	414 0.085 5.9	419 0.085 6.0	424 0.087 6.1	430 0.088 6.1	435 0.089 6.2	449 0.092 6.4	463 0.095 6.6	477 0.097 6.8		
		Temperat Curren:	18 Le→	100	321 0.065 4.6	328 0.067 4.7	335 0.068 4.8	342 0.070 4.9	346 0.071 4.9	352 0.072 5.0	357 0.073 5.1	363 0.074 5.2	377 0.077 5.4	391 0.080 5.6	405 0.083 5.8		
		lement (Length	75	248 0.051 3.5	255 0.052 3.6	262 0.054 3.7	269 0.055 3.8	273 0.056 3.9	279 0.057 4.0	285 0.058 4.1	290 0.059 4.1	304 0.062 4.3	318 0.065 4.5	332 0.068 4.7		
		Heating Element Temperature: 1700°C Heating Element Curren: 70A	1 Hot End Length Le→	E E	50	75	100	125	140	160	180	200	250	300	350		
		H H	E	Cold	End Le	ngth	Lu →			O							
	\mathcal{A}								Λ						- 38-	-	
K	10																
$\langle \ \rangle$																	

 λ

TORCH

 \mathcal{N}

Power: W Working Voltage: V Heating Element Temperature: 1700°C Heating Element Curren: 130A

-39-

Furnace Temperature: 1600°C Surface Load: 11.5W/cm²

Element Resistance (1700°C); Ω Center Distance: 50mm

YT TORCH

1800Type Φ6/Φ12 U-Shape Working Parameters Hot End Length Le

	_				_	1	1							_					_						_			_			_								
		4315	0.255	33.2	4323	0.256	33. 3	4334	926 U	33, 3	4344	1101 U	33.4	4355	0.258	33.5	4368	0.258	33.6	4381	0.259	33.7	4396	0.260	33.8	4414	0.261	34.0	4435	0. 202	04, 1	4459	0. 204	34.3	4485	07.00	4511	110L	34.7
850	-	4082	0.242	31.4	4090	0.242	31.5	4100	0.942	31.5	4111	1111	31.6	4121	0.244	31.7	4134	0.245	31.8	4147	0.245	31.9	4163	0.246	32.0	4181	0.247	32.2	4202	0. 249	0.26	4225	0.2.0	32.5	4251	7 7 7	1027	1121	32.9
815		3919	0.232	30.1	3927	0.929	30.9	3027	1000	0. 235 30.3	3948	0.934	30.4	3958	0.234	30.4	3971	0.235	30.5	3984	0.236	30.6	4000	0.237	30.8	4018	0.238	30.9	4039	0. 239	31.1	4062	0.240	31.2	4088	0. 242	31.4	LITE U	31.6
720		3476	0.206	26.7	3484	0 206	96. 8	2404	100 0	0. 207 26.9	3505	0.907	27.0	3515	0.208	27.0	3528	0.209	27.1	3541	0.210	27.2	3557	0.210	27.4	3575	0.212	27.5	3596	0.213	21.1	3619	0.214	27.8	3645	0.216	28.0	1100	28.2
630		3056	0.181	23.5	3064	0 181	92.6	2074	1001 0	0. 182 23. 6	3085	0 182	23.7	3095	0.183	23.8	3108	0.184	23.9	3121	0.185	24.0	3137	0.186	24.1	3155	0.187	24.3	3176	0. 188	24.4	3199	0. 189	24.6	3225	0, 191	24.8	1020	25.0
560		2730	0.162	21.0	2737	0 169	91.1	9748	0117	21 1	2758	0.162	21.2	2769	0.164	21.3	2782	0.165	21.4	2795	0.165	21.5	2810	0.166	21.6	2829	0.167	21.8	2849	0.169	51° A	2873	0.170	22.1	2899	0.172	22.3	0.172	22.5
500		2450	0.145	18.8	2458	0 145	18.9	9.468	0017	0.140	9.478	DATE O	19.1	2489	0.147	19.1	2502	0.148	19.2	2515	0.149	19.3	2530	0.150	19.5	2549	0.151	19.6	2569	0.152	19.8	2593	0.153	19.9	2619	0.\155	20.1	0.157	20.3
450		2217	0.131	17.1	2224	0 129	17 1	99.25	0.190	0. 132	2245	122	17.3	2256	0.133	17.4	2269	0.134	17.5	2282	0.135	17.6	2297	0.136	17.7	2315	0.137	17.8	2336	0. 138	19.0	2360	0.140	18.2	2386	0. 141	9419	2112	18.6
400		1983	0.117	15.3	1991	118	15.4	0.000	2002	0.118	2012	2102	15.5	2022	0.120	15.6	2035	0.120	15.7	2048	0.121	15.8	2064	0.122	15.9	2082	0.123	16.0	2103	0.124	10. 2	2126	0.126	16.4	2152	0, 127	10.0	0 100	16.8
355		1773	0.105	13.6	1781	0 105	13 7	1709	7611	0. 100	1802	0 107	13.9	1812	0.107	13.9	1825	0.108	14.0	1838	0.109	14.1	1854	0.110	14.3	1872	0.111	14.4	1893	0.112	14.0	1917	0.113	14.7	1943	0.115	14.9	0 116	15.1
315		1587	0.094	12.2	1595	0.004	10.2	1605	0 DUC	0, 030	1615	0 00K	12.4	1626	0, 096	12.5	1639	0.097	12.6	1652	0.098	12.7	1668	0.099	12.8	1686	0.100	13.0	1707	0. 101	13,1	1730	0.102	13.3	1756	0.104	13.5	1105	13.7
280		1424	0.084	11.0	1431	0.085	11 0	1449	2641	0.050	1452	2011 0 086	11.2	1463	0.087	11.3	1476	0.087	11.4	1489	0.088	11.5	1504	0.089	II. 6	1522	0.090	11.7	1543	160.0	11. 9	1567	0.093	12.1	1593	0.094	12.3	0 008	12.5
250		1284	0.076	9.9	1291	0.076	0.0	1209	2001	10.0	1312	0.078	10.1	1323	0.078	10.2	1336	0.079	10.3	1349	0.080	10.4	1364	0.081	10.5	1383	0.082	10.6	1403	0. 083	10.8	1427	0.084	11.0	1453	0.086	11.2	0.080	11.4
225		1167	0.069	9.0	1175	0.070	0.0	1195	0 020	0.070	9611	0.071	9.2	1206	0.071	9.3	1219	0.072	9.4	1232	0.073	9.5	1248	0.074	9.6	1266	0.075	9.7	1287	0.076	ה' ת	1310	0.078	10.1	1336	0.079	1969	2001	10.5
200		1050	0.062	8.1	1058	0.062	8 1	1060	0 000	0. 005 8 2	1079	0 064	8.3	1089	0.064	8.4	1102	0.065	8.5	1115	0.066	8.6	1131	0.067	8.7	1149	0.068	8.8	1170	0.069	3, 0	1194	0.071	9.2	1220	0.072	9.4	0.07A	9.6
180		957	0.057	7.4	965	0.057	7 4	075	0.050	0. 008	986	0.058	7.6	966	0.059	7.7	1009	0.060	7.8	1022	0.060	7.9	1038	0.061	8.0	1056	0.062	8.1	1077	0.064	0, 3	1100	0.065	8.5	1126	0.067	1.6	0.068	8.9
160		864	0.051	6.6	872	0.059	6.7	000	000	0. Uo2	892	0.052	6.9	903	0.053	6.9	916	0.054	7.0	929	0.055	7.1	945	0.056	7.3	963	0.057	7.4	984	9cn .0	0.1	1007	0.060	1.7	1033	0.061	1.9	0.062	8.1
140		124	0.046	5.9	822	0.046	6.0	780	0.047	0. UT/	662	0.047	6.1	810	0.048	6.2	823	0.049	6.3	836	0.049	6.4	851	0.050	6.5	869	0.051	6.7	890	ren .u	0.0	914	0.054	7.0	940	0.056	0.2	0.057	7.4
mm			125			140						180			200			225			250			280			315			355			400			h 50		500	

YANTAI TORCH SPECIAL HIGH TEMPERATURE CERAMICS CO., LTD

TORCH

YANTAI TORCH SPECIAL HIGH TEMPERATURE CERAMICS CO., LTD

RU

				YANTA		CH SPE	CIAL HI	GH TEN	IPERA	TURE C	ERAMI	cs co.,	LTD.	~			
			λ								0	P		YT TORC	н		
	1000	7458 0.124 30.4	7499 0.125 30.6	7524 0.125 30.7	7553 0.126 20.8	7586 0.126	7623 0.127 31.1	7664 0.128 31.3	7705 0.128 31.5	7755 0.129 31.7	7788 0.130 31.8	7829 0.130 32.0	7870 0.131 32.1	7912 0.132 32.3			
ο; o	006	6738 0.112 27.5	6779 0.113 27.7	6804 0.113 27.8	6833 0.114 97 0	6866 0.114 0.114	6903 6903 0.115 28.2	6944 0.116 28.3	6985 0.116 28.5	7035 0.117 28.7	7068 0.118 28.8	7109 0.118 29.0	7150 0.119 29.2	7191 0.120 29.4			
(1700) 50mm	850	6378 0.106 26.0	6419 0.107 26.2	6444 0.107 26.3	6472 0.108 96.4	6505 0.108 0.56	6542 6542 0.109 26.7	6584 0.110 26.9	6625 0.110 27.0	-	6707 0.112 27.4		6790 0.113 27.7	6831 0.114 27.9		λ	
Element Resistance (1700C); Ω Center Distance: 60mm	800	6017 0.100 24.6	6059 0.101 24.7	6083 0. 101 24. 8	6112 0.102 24.0	6145 6145 0.102 95 1		-	6265 0.104 25.6		6347 0.106 25.9		6430 0. 107 26. 2	6471 0.108 26.4	.0		•
t Resi r Dist	750	5657 0. 094 23-1	5698 0. 095 23. 3	5723 0. 095 23. 4	5752 0.096	-		-	5905 0.098 24.1	5954 0.099 24.3	5987 0.100 24.4	6028 0. 100 24. 6	6070 0. 101 24. 8	6111 0.102 24.9	.0r		
Element Resistanc Center Distance	700	5297 0.088 21.6	5338 0.089 21.8	5363 0.089 21.9	5392 0.090	0)		5545 0.092 22.6			5668 0. 094 23. 1	5709 0. 095 23. 3	5751 0.096 23.5			
Ра	650	4937 0. 082 20 2							5184 0.086 21.2				5349 0. 089 21. 8	5391 0. 090 22. 0			
1600° //cm² cing	600	4577 0.076 18.7	4618 0. 077 18.8	4643 0.077 19.0	4672 0. 078	4705 0.078	4742 4742 0.079 19.4	4783 0.080 19.5	4824 0.080 19.7	4874 0.081 19.9	4907 0.082 20.0	4948 0. 082 20. 2	4989 0. 083 20. 4	5030 0.084 20.5			
Furnace Temperature: 1600°C Surface Load: 11.5%/cm ² Shape Working	550	4217 0.070	4258 0.071 17.4	4283 0.071 17.5	4311 0.072 17.6	4344 0.072 17.7	4382 4382 0.073 17.9	4423 0.074 18.1	4464 0.074 18.2	4514 0.075 18.4	4547 0.076 18.6	4588 0.076 18.7	4629 0.077 18.9	4670 0.078 19.1			
Temper e Load:) C V	500	3856 0.064 15.7	3898 0.065 15.9	3922 0.065 16.0	3951 0.066	3984 0.066	4021 4021 0.067 16.4	4063 0.068 16.6	4104 0.068 16.8	4153 0.069 17.0	4186 0.070 17.1	4228 0.070 17.3	4269 0.071 17.4	4310 0.072 17.6			
urnace Surfac	450	3496 0. 058 14 3	3538 0.059 14.4	3562 0.059 14.5	3591 0.060	3624 3624 0.060	3661 0.061 14.9	3703 0.062 15.1	3744 0.062 15.3	3793 0. 063 15. 5	3826 0.064 15.6	3867 0.064 15.8	3909 0. 065 16. 0	3950 0. 066 16. 1			
	400	3136 0.052 12.8	3177 0.053 13.0	3202 0.053 13.1	3231 0.054	3264 0. 054 12 - 2	13.5 0.055 13.5	3342 0.056 13.6	3384 0.056 13.8	3433 0.057 14.0	3466 0.058 14.1	3507 0.058 14.3	3549 0.059 14.5	3590 0.060 14.7			
Power: W ng Voltage	355	2812 0.047	2853 0.048	2878 0.048 11.7	2907 0.048	2940 2940 0.049	2977 2977 0.050 12.2	3018 0. 050 12. 3	3059 0.051 12.5	3109 0.052 12.7	3142 0.052 12.8	3183 0.053 13.0	3224 0.054 13.2	3266 0.054 13.3			
Powers W Furnace Temperature: 1600°C Working Voltage: V Surface Load: 11.5W/cm ² Φ9/Φ18.U-Shape Working	315	2524 0.042	2565 0.043	2590 0.043 10.6	2619 0.044	2652 0.044	2689 0.045 11.0	2730 0.045 11.1	2771 0.046 11.3	2821 0.047 11.5	2854 0.048 11.6	2895 0.048 11.8	2936 0.049 12.0	2978 0. 050 12. 2	1/-		
	280	2272 0.038 9.3	2313 0.039 9.4	2338 0. 039 9. 5	0.039	2400 0.040	3.0 2437 0.041 9.9	2478 0.041 10.1	2519 0.042 10.3	2569 0.043 10.5	2602 0.043 10.6	2643 0.044 10.8	2684 0.045 11.0	2725 0.045 11.1	0,		
1700℃ УР€	250	2056 0.034 8.4	2097 2097 0. 035 8. 6	2122 0, 035 8.7	2151 0. 036	2184 0.036	2221 2221 0.037 9.1	2262 0.038 9.2	2303 0.038 9.4	2353 0.039 9.6	2386 0.040 9.7	2427 0.040 9.9	2468 0.041 10.1	2509 0.042 10.2			
mperature: 1700°C rren: 245A 1800Type	225	1876 0.031 7.7	1917 0. 032 7. 8	1942 0. 032 7. 9	1971 0. 033	2003 0. 033 0. 033	2.2 2041 0.034 8.3	2082 0. 035 8. 5	2123 0.035 8.7	2173 0.036 8.9	2206 0. 037 9. 0	2247 0.037 9.2	2288 0. 038 9. 3	2329 0. 039 9. 5			
Temper Curren	200	1696 0.028 6.9	1737 0.029 7.1	1762 0.029 7.2	1790 0.030 7 3	1.3 1823 0.030 7.4	1.1 1861 0.031 7.6	1902 0.032 7.8	1943 0.032 7.9	1992 0. 033 8. 1	2025 0.034 8.3	2067 0. 034 8. 4	2108 0.035 8.6	2149 0.036 8.8			
Heating Element Temperature: 1700°C Heating Element Curren: 245A Hot End Lancth Lat	180	1552 0.026 6.3	1593 0. 027 6. 5	1618 0.027 6.6	1646 0.027 6.7	0. 028	0. 3 1716 0. 029 7. 0	1758 0.029 7.2	1799 0.030 7.3	1848 0.031 7.5	1881 0.031 7.7	1923 0.032 7.8	1964 0. 033 8. 0	2005 0.033 8.2			
ting El ting El	n 160	1407 0.023 5.7	1449 0.024 5.9	0	0		-	-	1655 0.028 6.8		1737 0.029 7.1		1820 0.030 7.4	1861 0.031 7.6			
Heat Heat		ରୁ d End	C22 Lengtl	580 h Lu	315	355	400	450	500	560	600	650	700	750			
o CY								(U)									
NK							\sum						-	- 40-	-1		

 λ

 $\sqrt{2}$

S

0.574

0.460

1103 0.521

0.467

883 0.417

0.374

15.3 709 0.335

13.8 640 0.302

0.275

0.247

431 0.204

8.2 385 0.182

7.5 350 0.165

292 0.138

1089 0.515

26.2 1209 0.571

1093 0.517

0.462

15.1 699 0.330 15.2 704 0.333

13.6 629 0.297 13.7 634 0.300

12. 1 571 0. 270

463 0.219 10.1 467 0.221 10.1 10.1 0.223

420 0.199

8.0 374 0.177

6.0 281 0.133

254 0.120 5.5 258 0.122 5.6

509 0.241 11.1 513 0.243 0.243

0.412 19.0 878 0.415

785 0.371

576 0.272

0.245

426 0.201

379 0.179

345 0.163

287 0.135

263 0.124

1000	9290 0.0717 25.8	9339 0.0721 25.9	9369 0.0723 26.0	9404 0.0726 26.1	9444 0.0729 26.2	9489 0.0732 26.4	9539 0.0736 26.5	9589 0.0740 26.6	9649 0.0745 26.8	9689 0.0748 26.9	9739 0.0751 27.1	9788 0.0755 27.2		
900	8395 0.0648 23.3	8445 0.0652 23.5	8475 0.0654 23.5	8510 0.0657 23.6	8550 0.0660 23.7	8595 0.0663 23.9	8645 0.0667 24.0	8695 0.0671 24.2	8755 0.0676 24.3	8794 0.0679 24.4	8844 0.0682 24.6	8894 0.0686 24.7		
850	7948 0.0613 22.1	7998 0.0617 22.2	8028 0.0619 22.3	8063 0.0622 22.4	8103 0.0625 22.5	8148 0.0629 22.6	8198 0.0633 22.8	8248 0.0636 22.9	8307 0.0641 23.1	8347 0.0644 23.2	8397 0.0648 23.3	8447 0.0652 23.5		
800	7501 0.0579 20.8	7551 0.0583 21.0	7581 0.0585 21.1	7616 0.0588 21.2	7656 0.0591 21.3	7701 0.0594 21.4	7751 0.0598 21.5	7800 0.0602 21.7	7860 0.0607 21.8	7900 0.0610 21.9	7950 0.0613 22.1	8000 0.0617 22.2		
750	7054 0.0544 19.6	7104 0.0548 19.7	7134 0.0550 19.8	7169 0.0553 19.9	7209 0.0556 20.0	7254 0.0560 20.1	7303 0.0564 20.3	7353 0.0567 20.4	7413 0.0572 20.6	7453 0.0575 20.7	7503 0.0579 20.8	7553 0.0583 21.0	11-	
700	6607 0.0510 18.4	6657 0.0514 18.5	6687 0.0516 18.6	6722 0.0519 18.7	6761 0.0522 18.8	6806 0.0525 18.9	6856 0.0529 19.0	6906 0.0533 19.2	6966 0.0538 19.4	7006 0.0541 19.5	7056 0.0544 19.6	7106 0.0548 19.7	5	
650	6160 0.0475 17.1	6210 0.0479 17.2	6240 0.0481 17.3	6274 0.0484 17.4	6314 0.0487 17.5	6359 0.0491 17.7	6409 0.0495 17.8	6459 0.0498 17.9	6519 0.0503 18.1	6559 0.0506 18.2	6609 0.0510 18.4	6659 0:0514 18.5		
600	5713 0.0441 15.9	5762 0.0445 16.0	5792 0.0447 16.1	5827 0.0450 16.2	5867 0.0453 16.3	5912 0.0456 16.4	5962 0.0460 16.6	6012 0.0464 16.7	6072 0.0469 16.9	6112 0.0472 17.0	6162 0.0475 17.1	6212 0.0479 17.3		
550	5265 0.0406 14.6	5315 0.0410 14.8	5345 0.0412 14.8	5380 0.0415 14.9	5420 0.0418 15.1	5465 0.0422 15.2	5515 0.0426 15.3	5565 0.0429 15.5	5625 0.0434 15.6	5665 0.0437 15.7	5715 0.0441 15.9	5764 0.0445 16.0		
500	4818 0.0372 13.4	4868 0.0376 13.5	4898 0.0378 13.6	4933 0.0381 13.7	4973 0.0384 13.8	5018 0.0387 13.9	5068 0.0391 14.1	5118 0.0395 14.2	5178 0.0400 14.4	5218 0.0403 14.5	5267 0.0406 14.6	5317 0.0410 14.8		
450	4371 0.0337 12.1	4421 0.0341 12.3	4451 0.0343 12.4	4486 0.0346 12.5	4526 0.0349 12.6	4571 0.0353 12.7	4621 0.0357 12.8	4671 0.0360 13.0	4730 0.0365 13.1	4770 0.0368 13.3	4820 0.0372 13.4	4870 0.0376 13.5		
400	3924 0.0303 10.9	3974 0.0307 11.0	4004 0.0309 11.1	4039 0.0312 11.2	4079 0.0315 11.3	4124 0.0318 11.5	4174 0.0322 11.6	4223 0.0326 11.7	4283 0.0331 11.9	4323 0.0334 12.0	4373 0.0337 12.1	4423 0.0341 12.3		
355	3522 0.0272 9.8	3572 0.0276 9.9	3602 0.0278 10.0	3636 0.0281 10.1	3676 0.0284 10.2	3721 0.0287 10.3	3771 0.0291 10.5	3821 0.0295 10.6	3881 0.0299 10.8	3921 0.0303 10.9	3971 0.0306 11.0	4021 0.0310 11.2		Í
315	3164 0.0244 8.8	3214 0.0248 8.9	3244 0.0250 9.0	3279 0.0253 9.1	3319 0.0256 9.2	3364 0.0260 9.3	3413 0.0263 9.5	3463 0.0267 9.6	3523 0.0272 9.8	3563 0.0275 9.9	3613 0.0279 10.0	3663 0.0283 10.2		
280	2851 0.0220 7.9	2901 0.0224 8.1	2931 0.0226 8.1	2966 0.0229 8.2	3006 0.0232 8.3	3051 0.0235 8.5	3100 0.0239 8.6	3150 0.0243 8.8	3210 0.0248 8.9	3250 0.0251 9.0	3300 0.0255 9.2	3350 0.0258 9.3		
250	2583 0.0199 7.2	2633 0.0203 7.3	2663 0.0205 7.4	2697 0.0208 7.5	2737 0.0211 7.6	2782 0.0215 7.7	2832 0.0219 7.9	2882 0.0222 8.0	2942 0.0227 8.2	2982 0.0230 8.3	3032 0.0234 8.4	3082 0.0238 8.6		
225	2359 0.0182 6.6	2409 0.0186 6.7	2439 0.0188 6.8	2474 0.0191 6.9	2514 0.0194 7.0	2559 0.0197 7.1	2609 0.0201 7.2	2659 0.0205 7.4	2718 0.0210 7.6	2758 0.0213 7.7	2808 0.0217 7.8	2858 0.0221 7.9		
200	2136 0.0165 5.9	2186 0.0169 6.1	2215 0.0171 6.2	2250 0.0174 6.3	2290 0.0177 6.4	2335 0.0180 6.5	2385 0.0184 6.6	2435 0.0188 6.8	2495 0.0193 6.9	2535 0.0196 7.0	2585 0.0199 7.2	2635 0.0203 7.3		
180	1957 0.0151 5.4	2007 0.0155 5.6	2037 0.01 <i>57</i> 5.7	2072 0.0160 5.8	2111 0.0163 5.9	2156 0.0166 6.0	2206 0.0170 6.1	2256 0.0174 6.3	2316 0.0179 6.4	2356 0.0182 6.5	2406 0.0186 6.7	2456 0.0189 6.8		
mm	200	250	280	315	355	400	450	500	560	600	650	700		

TURCH.

Element Resistance (1820°C); Ω Center Distance: 25mm

Furnace Temperature: 1720°C Surface Load: 12W/cm²

Power: W Working Voltage: V

Heating Element Temperature: 1820°C Heating Element Curren: 46A

End Length Le

Hot

1850Type \$3/\$6 U-Shape Working Parameters

1186 0.560

1070 0.505

954 0.451

849 0.401

756 0.358

675 0.319

606 0.286

548 0.259

490 0.231

443 0.210

397 0.188

351 0.166

316 0.149

258

235 0.111

6.9

0.563

20.7 960 0.454

18.5 856 0.404 18.6

16.4 763 0.361 16.6

14.7 682 0.322 14.8 688 0.325 0.325

0.262 12.0 561 0.265

13.2 612 0.289 13.3 619

10.6 496 0.235 10.8 503

8.6 404 0.191 8.8

7.6 357 0.169 7.8

322 0.152 7.0 329 0.155

0.125

5.1 241 0.114 5.2

Cold End Length Lu \rightarrow

9.6 450 0.213 9.8 456 0.216

23. 3 1076 0. 509 23. 4 1083 0. 512

0.566

0.457

862 0.408

0.364

0.292

0.238 10.9

410 0.194

0.172

0.128

248 0.117 5.4

1089 0.515

0.460

0.367

695 0.328

0.296

567 0.268

0.197

0.175

335 0.159 7.3 339 0.160

0.131

0.411 18.9 873

16.9 780 0.369

Cold End Length Lu \rightarrow

-42-

®

YT TORCH

27.2 1264 0.597 27.5

1135 0.536 24.7 1148 0.542 25.0

22.1 1032 0.488

927 0. 438

17.9 835 0.394 18.1

740 0.350 16.1 754 0.356 16.4

671 0.317 14.6 684 0.323 14.9

555 0.262 12.1 568 0.268

509 0.240 11.1 522 0.247

462 0.218 10.0 475 0.225 10.3

381 0.180 8.3 394 0.186 8.6

323 . 0.153 7.0 7.0 336 0.159 7.3

300 0.142 6.5 313 0.148 6.8

0.203

416 0.197 9.0

626 0.296 13.6

12.3

11.3

1251 0.591

1019 0.481

19.6 914 0.432 19.9

822 0.388

613 0.290

26.6

21.6

24.0 1109 0.524 24.1 1122

0.469

19.2 888 0.420 19.3 901

0.376 17.3 809

15.4 714 0.338 15.5 727 0.344 0.344

13.9 645 0.305 14.0 658 0.311

12.6 587 0.277 12.8 600 0.284

11.4 529 0.250 11.5 542 0.256 11.8

9.4 436 0.206 9.5 449 0.212

8.4 390 0.184 8.5 403 0.190 8.8

7.6 355 0.168 7.7 368 0.174 8.0

297 0.140 6.5 310 0.147 6.7

0.127 269 5.8 5.8 274 0.129 6.0 6.0 0.136 6.2 6.2 6.2

 10.3

 477

 477

 0.226

 0.228

 10.4

 483

 0.228

 10.5

 10.5

 10.5

 10.5

 10.5

 10.234

 10.234

 10.8

0.585

0.530 24.4

0.475

0.426

0.382

Heating Element Temperature: 1700°C Heating Element Curren: 360A

-41 -

Le

Length

End

Hot

Furnace Temperature: 1600°C Surface Load: 11.5W/cm² Power: W Working Voltage: V

Element Resistance (1700°C); Ω Center Distance: 80mm

1800Type $\oplus 12/\oplus 24$ U-Shape Working Parameters

YT TORCH

(B

YANTAI TORCH SPECIAL HIGH TEMPERATURE CERAMICS CO., LTD

Element Resistance (1820°C); Ω Center Distance: 25mm Furnace Temperature: 1720°C Surface Load: 12W/cm² Power: W Working Voltage: V Heating Element Temperature: 1820°C Heating Element Curren: 69A

1850Type Φ4/Φ9 U-Shape Working Parameters

ength

End Le

Hot

-43-

YT TORCH

500	1521	0.319	22.0	1528	0.321	22.1	1535	0.322	22.2	1541	0.324	22.3	1545	0.325	22.4	1551	0.326	22.5	1556	0.327	22.6	1562	0.328	22.6	1575	0.331	22.8	1589	0.334	23.0	1603	0.337	23.2
450	1372	0.288	19.9	1379	0.290	20.0	1386	0.291	20.1	1392	0.292	20.2	1396	0.293	20.2	1402	0.294	20.3	1407	0.296	20.4	1413	0.297	20.5	1426	0.300	20.7	1440	0.302	20.9	1454	0.305	21.1
400	1223	0.257	17.7	1230	0.258	17.8	1237	0.260	17.9	1243	0.261	18.0	1247	0.262	18.1	1253	0.263	18.2	1258	0.264	18.2	1264	0.265	18.3	1277	0.268	18.5	1291	0.271	18.7	1305	0.274	18.9
355	1089	0.229	15.8	1096	0.230	15.9	1102	0.232	16.0	1109	0.233	16.1	1113	0.234	16.1	6111	0.235	16.2	1124	0.236	16.3	1130	0.237	16.4	1143	0.240	16.6	1157	0.243	16.8	1170	0.246	17.0
315	970	0.204	14.1	976	0.205	14.2	983	0.207	14.2	066	0.208	14.3	994	0.209	14.4	1000	0.210	14.5	1005	0.211	14.6	1010	0.212	14.6	1024	0.215	14.8	1038	0.218	15.0	1051	0.221	15.2
280	865	0.182	12.5	872	0.183	12.6	879	0.185	12.7	886	0.186	12.8	890	0.187	12.9	895	0.188	13.0	106	0.189	13.1	906	0.190	13.1	920	0.193	13.3	933	961.0	13.5	947	0.199	13.7
250	776	0.163	11.2	783	0.164	CH3	789	0.166	11.4	796	0.167	11.5	800	0.168	11.6	806	0.169	11.7	811	0.170	11.8	817	0.172	11.8	830	0.174	12.0	844	771.0	12.2	858	0.180	12.4
225	101	0.147	10.2	708	0.149	10.3	715	0.150	10.4	722	0.152	10.5	726	0.152	10.5	731	0.154	10.6	737	0.155	10.7	742	0.156	10.8	756	0.159	11.0	169	0.162	11.2	783	0.164	11.3
200	627	0.132	9.1	634	0.133	9.2	640	0.135	9.3	647	0.136	9.4	651	0.137	9.4	657	0.138	9.5	662	0.139	9.6	668	0.140	9.7	681	0.143	6.6	695	0.146	10.1	709	0.149	10.3
180	567	0.119	8.2	574	0.121	8.3	581	0.122	8.4	588	0.123	8.5	592	0.124	8.6	597	0.125	8.7	603	0.127	8.7	608	0.128	8.8	622	0.131	9.0	635	0.133	9.2	649	0.136	9.4
160	508	0.107	7.4	514	0.108	7.5	521	0.109	7.6	528	0.111	7.7	532	0.112	7.7	538	0.113	7.8	543	0.114	7.9	548	0.115	7.9	562	0.118	8.1	576	0.121	8.3	589	0.124	8.5
140	448	0.094	6.5	455	0.096	6.6	462	0.097	6.7	468	0.098	6.8	473	0.099	6.8	478	0.100	6.9	483	0.102	7.0	489	0.103	7.1	502	0.106	7.3	516	0.108	7.5	530	0.111	7.7
125	403	0.085	5.8	410	0.086	5.9	417	0.088	6.0	424	0.089	6.1	428	0.090	6.2	433	0.091	6.3	439	0.092	6.4	444	0.093	6.4	458	0.096	6.6	471	0.099	6,8	485	0.102	7.0
100	329	0.069	4.8	336	0.070	4.9	342	0.072	5.0	349	0.073	5.1	353	0.074	5.1	359	0.075	5.2	364	0.076	5.3	370	0.078	5.4	383	0.080	5.6	397	0.083	5.8	410	0.086	5.9
06	299	0.063	4.3	306	0.064	4.4	313	0.066	4.5	319	0.067	4.6	323	0.068	4.7	329	0.069	4.8	334	0.070	4.8	340	0.071	4.9	353	0.074	5.1	367	0.077	5.3	381	0.080	5.5
mm		20			75			100			125			140			160			180			200			250			300			350	
Cold	F	nd	L	n	rth		Lu	-																									

YANTAI TORCH SPECIAL HIGH TEMPERATURE CERAMICS CO., LTD

Cold End Length Lu →

YANTAI TORCH SPECIAL HIGH TEMPERATURE CERAMICS CO., LTD.

RU

3561 0.217 27.8 3569 0.218 27.9 3579 0.218 3589 0.219 28.0 0.220 0.220 0.220 28.1 3612 28.2 3622 3622 0.220 0.220 3131 0.191 24.5 3138 0.192 24.5 3149 0.192 24.6
 3159
 3159

 0.193
 0.193

 3169
 0.193

 3169
 0.193

 3194
 0.193

 3194
 0.195

 3194
 0.195

 3194
 0.195

 3194
 0.195

 3194
 0.195

 3194
 0.195

 3194
 0.195

 3194
 0.195

 3270
 0.195

 3270
 0.196

 0.196
 0.196

 25.1
 0.196

 25.1
 0.196

 25.1
 0.196

 25.1
 0.196

 25.1
 0.196

 25.1
 0.196

 25.5
 0.196

 25.5
 0.196

 25.5
 0.196

 25.5
 0.196

 25.5
 0.196

 25.5
 0.196
 Shape Working Parameters 2796 0.171 21.8 2804 0.171 21.9 2814 0.172 2824 0.172 0.173 22.1 22846 0.174 22.2 2859 0.175 500 2509 0.153 0.153 0.154 19.7 2527 0.154 0.154 2298 0.140 17.9 2308 0.141 18.0 2320 0.142 18.1 18.1 2333 0.142 0.142 2270 0.139 17.7 2277 0.139 17.8 2287 0.140 17.9 18.2 2348 0.143 18.3 2366 0.144 18.5 2386 0.146 18.6 2409 0.147 18.8 14.9 1931 0.118 15.1 1954 1954 0.119 1624 0.099 12.7 1631 0.100 12.7 1642 0.100 12.8 1652 0.101 12.9 1662 0.101 13.0 0.102 13.1 13.1 1674 0.102 13.1 13.1 1687 0.103
 13.2

 1702

 1702

 0.104

 13.3

 1720

 0.105

 1740

 0.106

 1740

 0.106

 1763

 0.108

 13.6

 1763

 0.108

 13.6

 13.8
 1850Type Φ6/Φ12 U-1456 0.089 11.4 1464 0.089 11.4 11.4 11.7 11.5 1484 0.091 11.6 1494 0.091 11.7 11.7 1507 0.092 1337 0.082 10.4 1344 0.082 10.5 1355 0.083
 1365

 0.083
 0.083

 10.7
 1.175

 1375
 1.1387

 0.085
 0.085

 0.085
 0.085

 1.1415
 0.086

 0.086
 0.086

 0.086
 0.086

 0.087
 0.086

 0.086
 0.086

 0.087
 0.086

 11.1
 1.11

 11.2
 1.12

 11.4
 1.145

 0.089
 0.089

 0.087
 0.089

 0.087
 0.088

 0.087
 0.088

 1.15
 1.15

 1.15
 1.15
 1193 0.073 9.3 1201 0.073 9.4 1211 0.074 1074 0.066 8.4 1081 0.066 8.4 978 0.060 7.6 986 0.060 996 190.0 7.8 882 0.054 6.9 890 0.054 7.0 Hot End Length Le 900 0.055 7.0 715 0.044 5.6 722 0.044 5.6 733 0.045 5.7
 743
 743

 5.8
 5.8

 5.8
 5.9

 5.9
 5.9

 755
 5.9

 755
 5.9

 755
 5.9

 755
 5.9

 755
 5.9

 755
 5.9

 756
 6.0

 7778
 6.0

 6.0
 0.047

 793
 0.048

 811
 793

 811
 9.048

 811
 0.048

 811
 0.048

 811
 0.048

 811
 0.048

 811
 0.051

 833
 8.34

 9.055
 6.5

 854
 6.5

 854
 6.5

 854
 6.5

 6.7
 6.7
 250

Cold End Length Lu →

TORCH

Element Resistance (1820°C); Ω Center Distance; 50mm

Furnace Temperature: 1720°C

Surface Load: 12W/cm²

Power: W Working Voltage: V

Heating Element Temperature; 1820°C

Heating Element Curren: 128A

-44-

®

Power: W Working Voltage: V Heating Element Temperature: 1820°C Heating Element Curren: 241A

Furnace Temperature: 1720°C Surface Load: 12W/cm²

Element Resistance (1820°C); Ω Center Distance: 60mm

YT TORCH

1850Type \$9/\$18 U-Shape Working Parameters End Length Le

Hot

-45-

315 355 400	2579 2875 3207	0.044 0.049 0.055	10.7 11.9 13.3	2915		10.9 12.1 13.5	2939	0.046 0.051 0.056	12.2	2671 2966 3299	0.051	11.1 12.3 13.7	-	0.052	11.2 12.4 13.8	3034	0.052	12.6	2779 3074 3407	0.053	12.8	2819 3114 3447	0.054	12.9	2866 3162 3494	_	11.9 13.1 14		0.055	12.0 13.3 14.6		0.056 0	12.2 13.4 14.8
250 280	2321	0.040	8.7 9.6	2360	0.041	9.8	2384	0.041	9.9	-	0.042	10.0	2444	0.042	10.1	2480	0.043	10.3	2298 2520	0.043	10.5	2560	0.044	10.6	2608	0.045	10.8	2640	0.045	10.0 11.0	2680	0.046	10.2 11.1
200 225	1914	0.033	7.2 7.9	1954	0.034	8.1	1978	0.034	8.2	1821 2006	0.035	8.3	2038	0.035	8.5	2074	0.036	8.6	2114	0.036	8.8	2154	0.037	8.9	2017 2202	0.038	9.1		0.038	8,5 9.3	-	0.036 0.039 (_
160 180	1582	0.027	6.6	1622		6.7		0.028	6.8	1526 1674	0.029	_	1705	0.029	7.1	1741	0.030	7.2	1634 1781	0.031	7.4	1821	0.031	7.6	1869		N	1061 8211	~	7.3 7.9		-	7.4 8.1
mm 1		200		1	250 0.		-	280 0.	-	1	315 0.		-	355 0.		1	400 0.	_	1	450 0.	_	-	500 0.		2	560		1	009		-	650 0.	

YANTAI TORCH SPECIAL HIGH TEMPERATURE CERAMICS CO., LTD.

Cold End Length Lu →

VT TORCH YANTAI TORCH SPECIAL HIGH TEMPERATURE CERAMICS CO., LTD

R'"

				(7														_	$\langle ($	0	4				ΥT	TORC
	00°C): Ω		400	738	0.365	16.4	743	0.367	16.5	747	0.369	16.6	752	0.371	16.7	756	0.374	16.8	770	0.380	17.1	783	0.387	17.4	797	0.394	17.7
	tance (18 ce: 25mm		355	662	0.327	14.7	667	0.329	14.8	671	0.331	14.9	676	0.334	15.0	680	0.336	15.1	694	0.343	15.4	707	0.349	15.7	721	0.356	16.0
	Element Resistance (1800°C); Ω Center Distance: 25mm	Parameters	315	594	0.293	13.2	599	0.296	13.3	603	0.298	13.4	809	0.300	13.5	612	0.302	13.6	626	0.309	13.9	639	0.316	14.2	653	0.322	14.5
	Eleme Cento	aram	280	535	0.264	11.9	539	0.266	12:0	544	0.269	12.1	548	0.271	12.2	553	0.273	12.3	566	0.280	12.6	580	0.286	12.9	593	0.293	13.2
	: 1750°C		250	484	0.239	10.8	489	0.241	10.9	493	0.244	11.0	498	0.246	11.1	502	0.248	11.2	516	0.255	11.5	529	0.261	11.8	543	0.268	12.1
	Furnace Temperature: 1750°C jurface Load: 9W/cm ²	Φ3/Φ6 U-Shape Working	225	442	0.218	9.8	446	0.220	9.9	451	0.223	10.0	455	0.225	10.1	460	0.227	10.2	473	0.234	10.5	487	0.240	10.8	500	0.247	11.1
	Furnace Tempe Surface Load:	ape	200	399	0.197	8.9	404	0.199	9.0	408	0.202	9.1	413	0.204	9.2	417	0.206	9.3	431	0.213	9.6	444	0.219	9.9	458	0.226	10.2
	05	hS-U	180	365	0.180	8.1	370	0.183	8.2	374	0.185	8.3	379	0.187	8.4	383	0.189	8.5	397	0.196	8.8	410	0.203	9.1	424	0.209	9.4
K	Power: W Working Voltage: V	/Φ θ Ι	160	332	0.164	7.4	336	0.166	7.5	341	0.168	7.6	345	0.170	1.7	350	0.173	7.8	363	0.179	8.1	377	0.186	8.4	390	0.193	8.7
		e	140	298	0.147	6.6	302	0.149	6.7	307	0.151	6.8	311	0.154	6.9	316	0.156	7.0	329	0.163	7.3	343	0.169	7.6	356	0.176	6.7
	ıre: 1800 15A	1900Type	125	272	0.134	6.0	TTC	0.137	6.1	281	0.139	6.2	286	0.141	6.3	290	0.143	6.4	304	0.150	6.7	317	0.157	7.0	331	0.163	7.3
	Heating Element Temperature: 1800°C Heating Element Curren: 45A	Ţ	100	230	0.113	5.1	234	0.116	5.2	239	0.118	5.3	243	0.120	5.4	248	0.122	5.5	261	0.129	5.8	275	0.136	6.1	288	0.142	6.4
	Element Element	Hot End Length	50	145	0.072	3.2	149	0.074	3.3	154	0.076	3.4	158	0.078	3.5	163	0.080	3.6	176	0.087	3.9	190	0.094	4.2	203	0.100	4.5
	Heating Heating	Hot En	E Cold		125		-	140			160			180			200	5		250			300			350	
OR	h I																	-	— Z	16-							

 λ

TORCH

-46-

Heating Element Temperature: 1830°C Bower: W Heating Element Curren: 72A Working Voltage: V

-47-

Furnace Temperature: 1780°C Surface Load: 10.5W/cm²

Element Resistance (1830°C): Ω Center-Distance, 25mm **rameters**

YT TORCH

Parameters	
Shape Working	
e Φ4/Φ9 U-Sł	
1900Type	nd Length Le→

Hot

															22									
500	1400	0.270	19.4	1407	0.271	19.5	1414	0.273	19.6	1422	0.274	19.7	1429	0.276	19.8	1443	0.267	20.0	1458	0.281	20.2	1472	0.284	20.4
450	1268	0.245	17.6	1275	0.246	17.7	1282	0.247	17.8	1290	0.249	17.9	1297	0.250	18.0	1311	0.243	18.2	1326	0.256	18.4	1340	0.258	18.6
400	1136	0.219	15.8	1143	0.221	15.9	1151	0.222	16.0	1158	0.223	16.1	1165	0.225	16.2	1179	0.218	16.4	1194	0.230	16.6	1208	0.233	16.8
355	1017	0.196	14.1	1025	0.198	14.2	1032	0.199	14.3	1039	0.200	14.4	1046	0.202	14.5	1061	0.196	14.7	1075	0.207	14.9	1089	0.210	15.1
315	912	0.176	12.7	919	0.177	12.8	926	0.179	12.9	934	0.180	13.0	941	0.181	13.1	955	0.177	13.3	970	0.187	13.5	984	0.190	13.7
280	820	0.158	11.4	827	0.160	11.5	834	0.161	11.6	841	0.162	11.7	848	0.164	11.8	863	0.160	12.0	877	0.169	H2,2	892	0.172	12.4
250	741	0.143	10.3	748	0.144	10.4	755	0.146	10.5	762	0.147	10.6	769	0.148	10.7	784	0.145	10.9	798	0.154	III	813	0.157	11.3
225	675	0.130	9.4	682	0.132	9.5	689	0.133	9.6	969	0.134	9.7	703	0.136	9.8	718	0.133	10.0	732	0.141	10.2	747	0.144	10.4
200	609	0.117	8.5	616	0.119	8.6	623	0.120	8.7	630	0.122	8.8	637	0.123	8.9	652	0.121	9.1	999	0.129	9.3	681	0.131	9.5
180	556	0.107	7.7	563	0.109	7.8	570	0.110	7.9	577	0.111	8.0	585	0.113	8.1	599	0.111	8.3	613	0.118	8.5	628	0.121	8.7
160	503	0.097	7.0	510	0.098	7.1	518	0.100	72	525	0.101	7.3	532	0.103	7.4	546	0.101	7.6	561	0.108	7.8	575	0.111	8.0
140	450	0.087	6.3	458	0.088	6.4	465	060.0	6.5	472	0.091	6.6	479	0.092	6.7	494	160.0	6.9	508	0.098	7.1	522	0.101	7.3
125	411	0.079	5.7	418	0.081	5.8	425	0.082	5.9	432	0.083	6.0	440	0.085	6.1	454	0.084	6.3	468	060.0	6.5	483	0.093	6.7
100	345	0.067	4.8	352	0.068	4.9	359	0.069	5.0	366	0.071	5.1	374	0.072	5.2	388	0.072	5.4	402	0.078	5.6	417	0.080	5.8
50	213	0:041	3.0	220	0.042	3.1	228	0.044	3.2	235	0.045	3.3	242	0.047	3.4	256	0.047	3.6	271	0.052	3.8	285	0.055	4.0
mm	U	125			140						180						250						350	
old.	End	Lei	nøt	h	Lu	+																		

YANTAI TORCH SPECIAL HIGH TEMPERATURE CERAMICS CO., LTD

Cold End Length Lu \rightarrow

TORCH

YT TORCH ANTAI TORCH SPECIAL HIGH TEMPERATURE CERAMICS CO., LTD

RU'

0.143 18.6 0.1444 0.1444 18.7 2443 0.145 0.145 0.145 0.145 18.8 2469 0.146 0.146 0.141 18.4 2404 0.142 18.5 0.148 19.2 0.149 19.4 19.4 19.6 2573 0.151 19.8 2573 0.152 19.8 2573 0.152 2599 0.154 0.127 16.6 2167 0.128 0.128 0.131 17.1 0.132 17.2 0.135 17.6 2310 0.137 17.8 0.138 18.0 18.0 0.140 0.140 18.2 0.129 16.8 2193 0.130 16.9 16.9 16.9 16.9 16.0 0.134 17.4 1900Type $\Phi 6/\Phi 12$ U-Shape Working Parameters 0.116 15.0 1969 0.116 15.1 0.123 16.0 16.0 16.2 16.2 16.4 16.4 16.4 16.4 0.126 0.128 0.122 15.8 0.106 13.8 13.9 1810 0.107 13.9 0.108 13.0 13.0 13.0 13.0 14.0 14.1 1836 0.109 14.1 1862 0.110 0.104 13.5 1771 0.105 13.6 0.106 13.7 0.112 14.5 1914 0.113 14.7 0.115 14.9 1966 0.116
 1619

 0.096

 12.5

 152

 1632

 1632

 1632

 0.097

 12.6

 12.6

 12.7

 12.7

 12.7

 12.7

 12.8

 0.098

 1658

 0.098

 12.8

 12.8

 12.8

 12.8
 0.093 12.2 1593 0.094 12.3 0.101 13.2 13.4 1736 0.103 13.4 1762 0.104 13.6 1788 0.106 0.095 12.4 0.100 13.0
 315
 315

 1422
 10.08

 10.08
 11.0

 11.1
 11.1

 11.1
 11.1

 11.1
 11.1

 11.1
 11.1

 11.1
 11.1

 11.1
 11.1

 11.1
 11.1

 11.1
 11.1

 11.1
 11.1

 11.1.5
 11.1.3

 11.1.5
 11.1.3

 11.1.5
 11.1.3

 11.1.5
 11.1.3

 11.1.7
 11.1.3

 11.1.7
 11.1.3

 11.1.7
 11.1.3

 11.1.7
 11.1.3

 11.1.7
 11.1.7

 11.1.7
 11.1.7

 11.1.7
 11.1.7

 11.1.7
 11.1.7

 11.1.7
 11.1.7

 11.1.7
 11.1.7

 11.1.7
 11.1.7

 11.1.7
 11.1.7

 11.1.7
 11.1.7

 11.1.7
 11.1.7

 11.1.7
 11.1.7

 0.076 9.9 1296 0.077 10.0 0.077 10.1 1322 0.078 1325 10.2 10.3 10.4 10.4 10.4 10.4 10.5 0.082 10.7 0.084 10.9 1439 0.085 11.1 11.3 11.3 11.3 11.3 11.5 0.074 9.6 0.075 9.7 0.070 9.1 1197 0.071 9.2 9.3 9.3 9.4 9.4 1236 0.072 0.078 10.1 1340 0.079 10.3 0.081 10.5 1392 0.082 0.076 9.9 1063 8.2 1079 0.064 8.3 0.071 9.2 9.2 1222 0.072 9.4 1248 1248 1248 1248 1248 1274 1274 967 0.057 7.4 980 980 0.058 7.5 0.059 7.6 0.060 0.060 7.7 1019 0.060 0.060 0.061 7.9 1045 0.062 8.0 0.063 8.2 8.4 8.4 1123 0.066 8.6 8.8 8.8 8.8 8.8 8.8 1175 0.070 Heating Element Temperature: 1850°C Heating Element Curren: 130A Wc 0.054 927 927 0.055 7.1 940 0.056 0.056 888 8.8 6.8 901 0.053 6.9 953 7.3 966 0.057 7.4 992 0.059 7.6 7.8 7.8 1044 0.062 8.0 0.063 8.2 8.2 8.2 0.063 0.063 0.048 6.2 821 0.049 6.3 Hot End Length 0.040 5.2 687 0.041 5.3 0.041 5.4 713 0.042 5.5 5.6 726 0.043 5.7 752 0.044 5.7 752 0.044 5.8 0.044 6.0 0.048 6.2 830 6.4 856 6.4 856 0.051 6.6 882 0.052

Cold End Length Lu →

TORCH

Element Resistance (1850°C); Ω Center Distance: 50mm

Furnace Temperature: 1800°C Surface Load: 10.5W/cm²

Power: W Working Voltage: V

-48-

®

VII. Overview of MoSi₂ Electric Heating Element Accessories

oRCh

ORCI

ORCH

-ORUN

TORCH

ORCY

TTORCH

TORCH

The accessories for MoSi2 electrical heating element mainly include fixing and conducting spare parts (holders and contact straps). The specification of which varies based on the electrical heating element diameter, center distance and other parameters. Generally, we have standard size spare parts and any special requirement may depend on the further communications. Conductive spare parts are weaved aluminum connection belt, the function is to connect heating element and wires, the specific specifications could be selected according to the requirement of users, and the special specifications could be customized.

